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990 A. Ourraoui

1. Introduction

Elliptic equations with variable exponent growth have been extensively
studied in the last decade, they can model various phenomena which are
motivated by the fact that this type of equations can serve as models in
the theory of electrorheological fluids, image processing, and the theory of
nonlinear elasticity. We refer to the overview papers [6, 14, 16, 18] for the
advances and the references in this area.

Our purpose is to study the following variable exponent equation

(P)
(

∆2p(x)u = f(x, u) in Ω,

|∆u|p(x)−2 ∂u∂ν + β(x)|u|p(x)−2u = 0 on ∂Ω,

where Ω is a bounded open domain in RN with smooth boundary ∂Ω,
∆2p(x)u = ∆(| ∆ |p(x)−2 ∆u) is the p(x)−biharmonic with p ∈ C(Ω), p(x) >

1 for every x ∈ Ω, β ∈ L∞(Ω) with essinfx∈Ωβ(x) > 0 and ν is the outward
normal vector on ∂Ω. We define

F (x, t) =

Z t

0
f(x, s)ds,

we denote by

p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x).

Throughout this paper, we suppose the following assumption,

(f0) f : Ω×R→ R is a Carathéodory function and satisfies

|f(x, t)| ≤ C1 + C2|t|α(x)−1, ∀(x, t) ∈ Ω×R,

where

α ∈ C(Ω), α(x) > 1, C1, C2 > 0

and

1 < α+ = sup
x∈Ω

α(x) ≤ p∗2(x),

p∗2(x) =

(
Np(x)

N−2p(x) if 2p(x) < N,

+∞ if 2p(x) ≥ N.

Many authors consider the existence of nontrivial solutions for some
fourth order problems such as [1, 2, 3, 5, 4, 8, 11, 12, 13]..., which represent
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On a class of a boundary value problems involving the ... 991

a generalization of the classical p−biharmonic operator obtained in the case
when p is a positive constant.

Here we point out that the p(x)−biharmonic operator possesses more
complicated nonlinearities than p-biharmonic, for example, it is inhomoge-
neous and usually it does not have the so-called first eigenvalue. Meanwhile,
the methods used in this paper are also applicable for the cases of other
boundary value conditions, for example, Navier and Neumann boundary
value conditions. We borrow some ideas from [15] and we extend them to
the case of p(x)−biharmonic equation with Robin boundary condition.

It is well known that elliptic problem like (P) involving the p(x)−biharmonic
operator without the (AR) type condition becomes a very difficult task to
get the boundedness of the Palais-Smale type sequences of the correspond-
ing functional, to overcome this difficulty, we use the assumption (f3) below.
That is why, at our best knowledge, the present paper is a first contribu-
tion in this direction. It is known that (f3) is much weaker than the (AR)
condition in the constant exponent case. Where in (f3), it is assumed the
existence of two positive constants c1 and c2 such that

ψ1(x, t) ≤ c1ψ1(x, s) ≤ c2ψ2(x, s), for all 0 ≤ t ≤ s,

where,

ψ1(x, t) = f(x, t)t− p−F (x, t),

ψ2(x, t) = f(x, t)t− p+F (x, t)

and Ambrosetti-Rabinowitz type conditions

(AR) there exist θ > p+,M > 0 such that for any x ∈ Ω and t ≥ M
we have

0 ≤ θF (x, t) ≤ f(x, t)t.

This paper is organized as four sections. In section 2, we introduce some
basic properties of the variable exponent Lebesgue and Sobolev spaces.
In section 3, under the conditions that (P) has variational structure, by
relying on variational argument we give the existence of at least a nontrivial
solution. In section 4, when (P) does not have variational structure, the
existence of a solution is established .
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992 A. Ourraoui

2. Preliminaries

In order to deal with the problem (P), we need some theory of variable
exponent Sobolev Space. For convenience, we only recall some basic facts
which will be used later. Suppose that Ω ⊂ RN be a bounded domain with
smooth boundary ∂Ω. Let C+(Ω) = {p ∈ C(Ω) and ess infx∈Ω p(x) > 1}
for any p(x) ∈ C+(Ω), denote by p

− = minx∈Ω p(x), p
+ = maxx∈Ω p(x) and

p∗k(x) =

(
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N.

Define the variable exponent Lebesgue space by

Lp(x)(Ω) = {u : Ω→ R measurable :

Z
Ω
| u |p(x) dx <∞},

then Lp(x)(Ω) endowed with the norm

| u |p(x)= inf{λ > 0 :

Z
Ω
| u
λ
|p(x) dx ≤ 1},

becomes a separable and reflexive Banach space (see [10]).

Proposition 2.1. (cf.[8, 10]) Set, ρ(u) =
R
Ω | u |p(x) dx, if u ∈ Lp(x)(Ω)

we have :
(1) | u |p(x)≥ 1⇒| u |p

−

p(x)≤ ρ(u) ≤| u |p
+

p(x) .

(2) | u |p(x)≤ 1⇒| u |p
+

p(x)≤ ρ(u) ≤| u |p
−

p(x) .

Define the variable exponent Sobolev space W k,p(x)(Ω) by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), | α |≤ k},

where Dαu = ∂|α|

∂α1x1...∂αN xN
with α = (α1, α2, ..., αN) is a multi-index

and | α |= ΣN
i=1αi. The space W

k,p(x)(Ω) with the norm k u k= Σ|α≤k| |
Dαu |p(x) is a Banach separable and reflexive space.

Proposition 2.2. (cf.[8, 10]) For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for
all x ∈ Ω, there is a continuous and compact embedding

W k,p(x)(Ω) → Lr(x)(Ω).
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On a class of a boundary value problems involving the ... 993

Since β− > 0, similar to Theorem 2.1. in [7], for any u ∈W 2,p(x)(Ω) we
have that |∆u|Lp(x)(Ω)+|u|Lp(x)(∂Ω) is a norm in 2,p(x) (Ω) which is equivalent
to standard one |∆u|Lp(x)(Ω) + |u|Lp(x)(Ω).

Proposition 2.3. (cf.[19]) Set (u) =
R
Ω | ∆u |p(x) dx+

R
∂Ω β(x)|u|p(x)dx.

For u, un ∈W 2,p(x)(Ω) we have,
(1) k u k≤ 1⇒k u kp+≤ (u) ≤k u kp− .
(2) k u k≥ 1⇒k u kp−≤ (u) ≤k u kp+ .
(3) k un k→ 0⇔ (un)→ 0.
(4) k un k→ +∞⇒ (un)→ +∞.

Proposition 2.4. (cf.[10]) For any u ∈ Lp(x)(Ω), v ∈ Lq(x)(Ω), we have

|
Z
Ω
uvdx |≤ ( 1

p−
+
1

q−
) k u kp(x)k v kq(x),

where
1

p(x)
+

1

q(x)
= 1.

Lemma 2.1. (cf.[10]) If f : Ω×R→ R is a Carathéodory function and

|f(x, s)| ≤ a(x) + b|s|
p1(x)
p2(x) , ∀(x, s) ∈ Ω×R,

where p1(x), p2(x) ∈ C(Ω), a(x) ∈ Lp2(x)(Ω), p1(x) > 1, p2(x) > 1, a(x) ≥
0 and b ≥ 0 is a constant, then the Nemytskii operator from Lp1(x)(Ω) to
Lp2(x)(Ω) defined by Nf (u)(x) = f(x, u(x)) is a continuous and bounded
operator.

Proposition 2.5. (cf.[17]) Let X be a real Banach space, eB be a bounded
open subset of X, A : eB → X is compact continuous, I is the identity
mapping on X, then the Leray-Schauder degree defined by deg(I−A, eB, 0)
of I −A verifies the following assertions:

(i) deg(I, eB, 0) = 1;
(ii) deg(I −A, eB, 0) 6= 0 then Ax = x has a solution;

(iii) If L : eB×[0, 1]→ X is compact continuous mapping with L(x, λ) 6=
x for x ∈ ∂ eB and λ ∈ [0, 1] then deg(I − L(., λ), eB, 0) does not depend on
the choice of λ.

Let X = W 2,p(x)(Ω), endowed with the induced norm k . k, is also
reflexive separable space and there is a continuous and compact embedding
from X into Lr(x) for 1 < r(x) < p∗2(x).
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994 A. Ourraoui

Definition 2.1. We say that u ∈ X is a weak solution of problem (P) ifZ
Ω
| ∆u |p(x)−2 ∆u∆vdx+

Z
∂Ω

β(x)|u|p(x)−2uvdx =
Z
Ω
f(x, u)vdx,

for all v ∈ X.

3. The variational method

We define the functional associated to problem (P) by

φ(u) =

Z
Ω

1

p(x)
| ∆u |p(x) dx+

Z
∂Ω

β(x)
1

p(x)
|u|p(x)dx−

Z
Ω
F (x, u)dx.

A standard argument shows that the functional φ is of class C1(X,R),(cf.[9]).
By the famous Mountain Pass lemma we state the following Theorem,

Theorem 3.1. Suppose (f0) with p+ < α− hold.
Assume the following hypotheses,
(f1) The following limit holds uniformly for a.e x ∈ Ω

lim
|t|→∞

f(x, t)t

| t |p+
= +∞.

(f2) f(x, t) = o(tp(x)−1) as t→ 0 uniformly x in Ω.
(f3) There exist two positive constants c1 and c2 such that

ψ1(x, t) ≤ c1ψ1(x, s) ≤ c2ψ2(x, s), for all 0 ≤ t ≤ s.

Where,

ψ1(x, t) = f(x, t)t− p−F (x, t),

ψ2(x, t) = f(x, t)t− p+F (x, t).

Then problem (P) admits at least a nontrivial solution in X.

Noting that φ0 is the sum of a (S+) type map and a weakly-strongly
continuous map, so φ0 is of (S+) type. To see that the Cerami condition
(C) holds, it is enough to verify that any Cerami sequence is bounded.

Proof of Theorem 3.1: We check the geometric assumptions and of
compactness of the Mountain Pass Theorem as in the following lemmas.

Lemma 3.1. Suppose that (f0) − (f3) hold. If c ∈ R, then any sequence
of Cerami (C)c of φ is bounded.
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On a class of a boundary value problems involving the ... 995

Proof. Let (un)n be a (C)c sequence of φ. We claim that (un)n is
bounded, otherwise, up to a subsequence we may assume that

φ(un)→ c, k un k→ +∞, φ0(un)→ 0.

Putting ωn =
un
kunk , up to a subsequence we have ωn ω in X, ωn →

ω in Lp(x)(Ω), ωn(x)→ w(x).a.e x ∈ Ω.
Here, two cases appear:

When ω 6≡ 0. From the fact that φ0(un)un = 0, which means,

Z
Ω
| ∆un |p(x) dx+

Z
∂Ω
| β(x)un |p(x) dx−

Z
Ω
f(x, un)undx = 0.(3.1)

Dividing (3.1) by k un kp
+
, soZ

Ω

f(x, un)un
k un kp+

<∞,

however, using (f1) and lemma of Fatou we obtainZ
Ω

f(x, un)un
k un kp+

dx =

Z
Ω

f(x, un)un | ω |p
+

| un |p+
dx→∞,

which is contradictory.
In the case when ω ≡ 0, we choose a sequence tn ∈ [0, 1] satisfying

φ(tnun) = maxtn∈[0,1] φ(tun).

In virtue of wn → 0 in Lα(x)(Ω), |F (x, t)| ≤ C(1 + |t|α(x)), and by the
continuity of the Nemitskii operator, we see that F (., wn)→ 0 in L1(Ω) as
n→ +∞, so we entail that

lim
n→∞

Z
Ω
F (x,wn)dx = 0.(3.2)

Given m > 0, for n large enough we have kunk−1(2mp+)
1
p− ∈]0, 1[,

taking into acount (3.2) with R = (2mp+)
1
p− , it yields

φ(tnun) ≥ φ( R
kunkun) = φ(Rwn)

≥
R
Ω

Rp(x)

p(x) |∆wn|p(x) dx+
R
∂Ω β(x)|wn|p(x)dx−

R
Ω F (x,Rwn)dx

≥ Rp−

p+ −
R
Ω F (x,Rwn)dx ≥ m.

Thereby,

φ(tnun)→ +∞.
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996 A. Ourraoui

On the other hand, we know that φ(0) = 0, φ(un) → c, thus tn ∈]0, 1[
and < φ0(tnun), tnun >= tn

d
dt |t=tnφ(tun) = 0.

It follows,

φ(tnun)−
1

p−
φ0(tnun)(tnun)→ +∞.

Therefore,R
Ω(

1
p(x) −

1
p− ) | tn∆un |

p(x) dx+
R
∂Ω(

1
p(x) −

1
p− )β(x) | tnun |

p(x) +

R
Ω

³
1
p− f(x, tnun)(tnun)− F (x, tnun)dx

´
→ +∞,

so we have, Z
Ω

µ
1

p−
f(x, tnun)(tnun)− F (x, tnun)

¶
dx→ +∞,

accordingly we have

φ(un) = φ(un)−
1

p+
φ0(un).un

≥
Z
Ω

³ 1

p(x)
− 1

p+

´
| ∆un |p(x) dx+

Z
∂Ω
(
1

p(x)
− 1

p+
)β(x) | un |p(x) dx

+

Z
Ω

µ
1

p+
f(x, un)un − F (x, un)

¶
dx

≥
Z
Ω

µ
1

p+
f(x, un)un − F (x, un)

¶
dx.

From (f3), there exist two constants c1 and c2 such that

φ(un) ≥
Z
Ω

µ
1

p+
f(x, un)un − F (x, un)

¶
dx

≥ c1

Z
Ω

µ
1

p−
f(x, un)(un)− F (x, un)

¶
dx

≥ c1c2

Z
Ω

µ
1

p−
f(x, tnun)(tnun)− F (x, tnun)

¶
dx.(3.3)

Hence
φ(un)→ +∞,

which is impossible and thus (un) is bounded in X. 2

Lemma 3.2. Under the conditions of Theorem 3.1, φ verifies the following:
(a) There exist ρ > 0 and β > 0 such that φ(u) > β when k u k= ρ.
(b) There exists v ∈ X such that k v k< ρ and φ(v) < 0.
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Proof. In view of (f0) and (f2), there is a constant C1 > 0 such that

|F (x, t)| ≤ 1

2p+
|t|p(x) + C1|t|α(x), for (x, t) ∈ Ω×R.

Therefore, for kuk ≤ 1 we have

φ(u) ≥ 1
p+ [
R
Ω(|∆u|p(x) dx+

R
∂Ω β(x)|u|p(x))dx]− 1

2p+
R
Ω |u|p(x)dx− C1

R
Ω |u|α(x)dx

≥ 1
2p+ [

R
Ω(|∆u|p(x) dx+

R
∂Ω β(x)|u|p(x))dx]− C1

R
Ω |u|α(x)dx

≥ 1
2p+ kuk

p+ − C2kukα
−

≥ kukp+( 1
2p+ − C2kukα

−−p+).

Since p+ < α−, the function t 7→ ( 1
2p+ − C2t

α−−p+) is strictly positive
in a neighborhood of zero. It follows that there exist ρ > 0 and β > 0 such
that

φ(u) ≥ β ∀u ∈ X : kuk = ρ.

2

To apply the Mountain Pass Theorem, it suffices to show that

φ(tu)→ −∞ as t→ +∞,

for a certain u ∈ X.

Let u ∈ X \ {0}, by (f1), we may choose a constant

A >

R
Ω

1
p(x)

|∆u|p(x) dx+
R
∂Ω

β(x)
p(x)

|u|p(x)dxR
Ω
|u|p+dx , such that

F (x, t) ≥ A|t|p+ uniformly in x ∈ Ω.

Let t > 1 large enough, we have

φ(tu) ≤
R
Ω

tp(x)

p(x) [|∆u|p(x) dx+
R
∂Ω

β(x)
p(x) |tu|p(x)]dx−

R
Ω F (x, tu)dx

≤ tp
+
[
R
Ω

1
p(x) |∆u|p(x) dx+

R
∂Ω

β(x)
p(x) |u|p(x)dx]−

R
|tu|>CA F (x, tu)dx−

R
|tu|≤CA F (x, tu)dx

≤ tp
+
[
R
Ω

1
p(x) |∆u|p(x) dx+

R
∂Ω

β(x)
p(x) |u|p(x)dx]−Atp

+ R
Ω |u|p

+
dx−

R
|tu|≤CA F (x, tu)dx

+Atp
+ R

|tu|≤CA |u|
p+dx

≤ tp
+
[
R
Ω

1
p(x) |∆u|p(x) dx+

R
∂Ω

β(x)
p(x) |u|p(x)dx]−Atp

+ R
Ω |u|p

+
dx+ C1,

where C1 > 0 is a constant, which implies that

φ(tu)→ −∞ as t→ +∞.

2
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998 A. Ourraoui

It follows that there exists e X such that ||e|| > ρ and φ(e) < 0. According
to the Mountain Pass Theorem, φ admits a critical value τ ≥ C 0 which is
characterized by

τ = inf
h∈Γ

sup
t∈[0,1]

φ(h(t))

where

Γ = {h ∈ C([0, 1],X) : h(0) = 0 and h(1) = e}.

4. The non-variational method

We define the operators

hAu, vi =
Z
Ω
|∆u|p(x)−2u.∆v dx+

Z
∂Ω

β(x)|u|p(x)−2uvdx

and

hBu, vi =
Z
Ω
f(x, u)vdx, ∀v ∈ X,

where A,B : X → X∗.
We recall the interesting proposition,

Proposition 4.1. (cf.[8])

i) A : X → X∗ is a continuous, bounded and strictly monotone opera-
tor.

ii) A is a mapping of type (S+), i.e. if un u in X and

lim supn→∞ < A(un)−A(u), un − u >≤ 0, then un → u in X.

iii) The operator A : X → X∗ is a bounded homeomorphism .

So, we have the following lemma.

Lemma 4.1. The operator A−1 ◦ B is compact continuous from X to X
where A−1 is the inverse operator of A.

Proof. Let (un)n be a bounded sequence of X, and then up to a sub-
sequence denoted also by (un)n, there exists u ∈ X such that un → u in
Lα(x)(Ω) therefore, from lemma 2.1 we infer that Bun is strong convergent
in X∗. Since A−1 is a bounded homeomorphism then A−1 ◦ B is strong
convergent in X .

2

The main result of this section reads as follows:
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Theorem 4.1. Suppose that the Carathéodory function f satisfies (f0)
with α(x) < p−, then the problem (P) has a solution in X.

Set Lλu = λBu.

Proof. We consider the equation

Au = Lλu.(4.1)

The solutions of (4.1) are uniformly bounded for λ ∈ [0, 1], if not, then
there exists a sequence of solutions (un)n of (4.1) such that k un k→ +∞
and

Z
Ω
(|∆un|p(x) dx+

Z
∂Ω

β(x)|un|p(x))dx =
Z
Ω
λnf(x, un)undx,

with (λn)n ⊂ [0, 1]. In view of (f0) we haveZ
Ω
λnf(x, un)undx ≤ ε

Z
Ω
|un|p(x)dx+ C(ε),

with ε > 0 is small enough, because α(x) < p(x). So we deduce that (un)n
is bounded, which is a contradiction.

Let choose a radius R > 0 which all solutions of (4.1) are in the ball
B(0, R). Applying the Leray-Schauder degree, proposition 2.5, (because
now it is well defined) so we entail that

deg(I −A−1 ◦ Lλ,B(0, R), 0) = deg(I −A−1 ◦ L0,B(0, R), 0)
= deg(I −A−1 ◦ 0,B(0, R), 0),

where L0 = 0 and I is the identity mapping on X.

We point out that I −A−1 ◦ L0 has zero as a unique solution and thus
from proposition 2.5, we obtain

deg(I −A−1 ◦ L1,B(0, R), 0) = deg(I −A−1 ◦ L0,B(0, R), 0) = 1,

and consequently there exists u ∈ B(0, R) such that

Au−Bu = 0

has at least a solution. 2
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