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956 A. Ourraout

1. Introduction

Elliptic equations with variable exponent growth have been extensively
studied in the last decade, they can model various phenomena which are
motivated by the fact that this type of equations can serve as models in
the theory of electrorheological fluids, image processing, and the theory of
nonlinear elasticity. We refer to the overview papers [6, 14, 16, 18] for the
advances and the references in this area.

Our purpose is to study the following variable exponent equation

(7)) Alz?é:c;u = f(.’L', u) in 2,
[AuPe) 7258 + B(a) ul”™)u =0 on 0,

where € is a bounded open domain in RY with smooth boundary 9%,
A?)(x)u = A(] A |P®)=2 Aw) is the p(z)—biharmonic with p € C(Q), p(z) >

1 forevery z € Q, B € L*(Q) with essinfrcoB(z) > 0 and v is the outward
normal vector on 0€2. We define

F(x,t) = /Ot f(z,s)ds,

we denote by

p~:=inf p(z), p*:=supp(z).
Sy z€Q

Throughout this paper, we suppose the following assumption,
(fo) f: QxR — R is a Carathéodory function and satisfies
1f(z,)] < C1+ Calt|*™~1) V(z,t) € Q xR,

where

ac€CQ),a(x)>1,01,0,>0

and

l<at = sup a(x) < p3(z),
€N

() = ks if 2p() < N,

2 +o0 if 2p(z)> N.
Many authors consider the existence of nontrivial solutions for some
fourth order problems such as [1, 2, 3, 5, 4, 8, 11, 12, 13]..., which represent
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a generalization of the classical p—biharmonic operator obtained in the case
when p is a positive constant.

Here we point out that the p(z)—biharmonic operator possesses more
complicated nonlinearities than p-biharmonic, for example, it is inhomoge-
neous and usually it does not have the so-called first eigenvalue. Meanwhile,
the methods used in this paper are also applicable for the cases of other
boundary value conditions, for example, Navier and Neumann boundary
value conditions. We borrow some ideas from [15] and we extend them to
the case of p(x)—biharmonic equation with Robin boundary condition.

It is well known that elliptic problem like (P) involving the p(x)—biharmonic
operator without the (AR) type condition becomes a very difficult task to
get the boundedness of the Palais-Smale type sequences of the correspond-
ing functional, to overcome this difficulty, we use the assumption (f3) below.
That is why, at our best knowledge, the present paper is a first contribu-
tion in this direction. It is known that (f3) is much weaker than the (AR)
condition in the constant exponent case. Where in (f3), it is assumed the
existence of two positive constants ¢; and ¢o such that

Y1(x,t) < crhr(w, s) < capa(x,s), for all 0 <t <s,

where,

7,111(%75) = f(l‘,t)t —p_F(:E,t),

Po(z,t) = f(x,t)t — pT F(z,t)

and Ambrosetti-Rabinowitz type conditions

(AR) there exist § > p*, M > 0 such that for any z € Q and t > M
we have

0 <O0F(z,t) < f(z,t)t.

This paper is organized as four sections. In section 2, we introduce some
basic properties of the variable exponent Lebesgue and Sobolev spaces.
In section 3, under the conditions that (P) has variational structure, by
relying on variational argument we give the existence of at least a nontrivial
solution. In section 4, when (P) does not have variational structure, the
existence of a solution is established .
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958 A. Ourraout

2. Preliminaries

In order to deal with the problem (P), we need some theory of variable
exponent Sobolev Space. For convenience, we only recall some basic facts
which will be used later. Suppose that Q € RY be a bounded domain with
smooth boundary Q. Let C4(Q) = {p € C(Q) and essinf _gp(z) > 1}

for any p(x) € C;(Q), denote by p~ = min__gp(z), p* = max g p(zx) and

Np(x .
p;;(:t) _ N,I;;(p()x) if kp(z) <N,
+00 if kp(x)> N.

Define the variable exponent Lebesgue space by
LP@(Q) = {u: Q — R measurable : / | u |P@) de < oo},
Q
then LP(*)(Q) endowed with the norm
[ = inf{A > 0 / 2P gz < 1)
p(z) Q Y = )
becomes a separable and reflexive Banach space (see [10]).

Proposition 2.1. (cf.[8, 10]) Set, p(u) = [o | u [P dz, if u € LP@(Q)
we have :

P r*
(1) |y > 1 =] w20 < pl) < u 7L,

( (
(2) [ lpwy< 1=l u )< plu) <[ ff, -

Define the variable exponent Sobolev space W P()(Q) by
WHEP@(Q) = {u € LPD(Q) : D € LP@(Q), | o |< k},

where D% = % with @ = (a1, @, ...,an) is a multi-index
and | a |= Y, ;. The space W*P(@)(Q) with the norm || u ||= o<k |

D% ]p(x) is a Banach separable and reflexive space.

Proposition 2.2. (cf.[8, 10]) For p,r € C;(Q) such that r(x) < pj(z) for
all x € Q, there is a continuous and compact embedding

WhPE)(Q) — L'@(Q).
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Since 4~ > 0, similar to Theorem 2.1. in [7], for any u € W2P()(Q) we
have that |Au @) () +|u| s 50) Is a norm in 20(®) () which is equivalent
to standard one |Au[pp@) o) + U] pre) )-

Proposition 2.3. (cf.[19]) Set o(u) = [ | Au [P@) dx + [, B(z)|ulP@dz.
For u, u, € WP (Q) we have,

(D) [ ull< =]l < olu) <[ u|P .

@) [ ullz1=]u P < olu) <[ uP" .

(3) [ un | = 0« o(un) — 0.

(4) || up, ||— +o00 = o(uy) — +00.

Proposition 2.4. (cf.[10]) For any u € LP™®)(Q),v € LI®)(Q), we have

1 1
| /qud:c < =+ ) el vl

where

1 1
m+m:1.

Lemma 2.1. (cf.[10]) If f : Q x R — R is a Carathéodory function and

r1(z) _
£(z,9)| < a(z) + bls| =™, V(z,5) €A xR,

where pi(x), p2(z) € C(Q), a(z) € LPUN(Q), pr(x) > 1, pa(w) > 1, a(z) >
0 and b > 0 is a constant, then the Nemytskii operator from LP*(®)(Q) to
LP2(®)(Q) defined by Ny(u)(z) = f(z,u(x)) is a continuous and bounded
operator.

Proposition 2.5. (cf.[17]) Let X be a real Banach space, B be a bounded
open subset of X, A : B — X is compact continuous, I is the identity
mapping on X, then the Leray-Schauder degree defined by deg(I — A, B, 0)
of I — A verifies the following assertions:

(i) deg(I, B,0) = 1;

(i1) deg(I — A, B,0) # 0 then Az = x has a solution;

(#11) If L - Bx[0,1] — X is compact continuous mapping with L(z, \) #
x for z € OB and A € [0,1] then deg(I — L(.,\), B,0) does not depend on
the choice of \.

Let X = W2P(®)(Q), endowed with the induced norm || . |, is also
reflexive separable space and there is a continuous and compact embedding
from X into L"(z) for 1 < r(z) < p5(x).
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960 A. Ourraout

Definition 2.1. We say that u € X is a weak solution of problem (P) if
/ | Au [P®) =2 AuAvdz +/ B(2)|ulP P 2uvde = / f(z,u)vdx,
Q o0 Q

for allv € X.

3. The variational method

We define the functional associated to problem (P) by
1 1

w) = | —— | Au [P®) dz + r)—

) /Qp(l“) | Gul o™ )P(CU)

A standard argument shows that the functional ¢ is of class C*(X, R),(cf.[9]).
By the famous Mountain Pass lemma we state the following Theorem,

|u]p($)dx—/ F(z,u)dx.
Q

Theorem 3.1. Suppose (fo) with p* < a~ hold.
Assume the following hypotheses,
(f1) The following limit holds uniformly for a.e x € Q

f(z, t)t _

lt|—oo |t [PT

(f2) f(z,t) = o(tp(x)_l) as t — 0 uniformly x in €.
(f3) There exist two positive constants c; and cy such that

P1(x,t) < erpr(,s) < eapa(x,s), forall 0 <t <s.
Where,

P1(z,t) = fx,t)t — p~ F(x,t),

¢2(x>t) = f(.’L',t)t _p+F($7t)'
Then problem (P) admits at least a nontrivial solution in X.
Noting that ¢’ is the sum of a (S;) type map and a weakly-strongly

continuous map, so ¢ is of (S;) type. To see that the Cerami condition
(C) holds, it is enough to verify that any Cerami sequence is bounded.

Proof of Theorem 3.1: We check the geometric assumptions and of
compactness of the Mountain Pass Theorem as in the following lemmas.

Lemma 3.1. Suppose that (fo) — (f3) hold. If ¢ € R, then any sequence
of Cerami (C), of ¢ is bounded.
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Proof. Let (up)n be a (C). sequence of ¢. We claim that (uy), is
bounded, otherwise, up to a subsequence we may assume that
P(un) = ¢ || un [[= +00, ¢'(un) — 0.

Putting w,, = =22~ up to a subsequence we have w,, — w in X, w, —
n Tun? n )y Wn
n

w in LP@(Q), wy(z) — w(z).a.e z € Q.
Here, two cases appear:
When w # 0. From the fact that ¢/(uy,)u, = 0, which means,

31)/ | Ay [P d + / | B(z)un [P@) da — / i, wn)unda = 0.
[5)9] Q

Dividing (3.1) by || un ||?", so

f z, un Un
Q |l un ”p

however, using (f1) and lemma of Fatou we obtain

fxunun fwunun]w]

Q | un IIZ”+ | un P

dx — 00,

which is contradictory.

In the case when w = 0, we choose a sequence t, € [0, 1] satisfying
(b(tnun) = maxy, clo,1] (b(tun)

In virtue of w, — 0 in L¥®)(Q), |F(x,t)| < C(1 + [t|*®)), and by the
continuity of the Nemitskii operator, we see that F(.,w,) — 0 in L}(Q) as
n — +00, so we entail that

(3.2) Jim /Q F(z,wy,)dz = 0.
1
Given m > 0, for n large enough we have |lu,|~'(2mp™)»~ €]0,1],
1
taking into acount (3.2) with R = (2mp™)»~, it yields
¢(tnun) > QS(”f”Un) = ¢(an)
> Jo If’p(z | Awn|P@) da + [o0 B(z)|w, [P de — [o F(z, Rw,)ds
Zip — Jo F(z, Rwy)dz > m.
Thereby,

d(tpuy) — +o0.
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962 A. Ourraout

On the other hand, we know that ¢(0) = 0, ¢(un) — ¢, thus ¢, €]0, 1]

0.

and < ¢/ (tpuy), thuy >= tn%h:tnd)(tun)
It follows,
1 /
Therefore,

fg(ﬁ - L—) | tnluy, [P0) da + faa(% - pA—)ﬁ(x) |ty PO +

_l’_

Jo (G2 £ (@, ttun) (tatin) = F (@, tywn)dz) —
so we have,

00,

/Q <pif($,tnun)(tnun) - F(a:,tnun)> d — 400,

accordingly we have

o) = ) = 6 )
11 N 11 "
/Q(m—pj) | Au, [P@) d:n+/m(———)ﬁ(:v)\un] @) dz

+/Q (p—lJrf(w,un)un - F(%%)) d

> / <p1+f(w Up ) Un, F(w,un)> dx.

From (f3), there exist two constants ¢; and cg such that

v

o(up) > / (pif(x Up ) Uy — F(x,un)> dx
> cl/Q <pif(x,un)(un) - F(w,un)) dz
(3.3) > clcg/Q (pi_f(x,tnun)(tnun) — F(a:,tnun)) dzx.
Hence

¢(un) - +OO7
which is impossible and thus (uy) is bounded in X.
Lemma 3.2. Under the conditions of Theorem 3.1, ¢ verifies the following:

(a) There exist p > 0 and 8 > 0 such that ¢(u) > 8 when || u ||= p
(b) There exists v € X such that || v ||< p and ¢(v) <0
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Proof. In view of (fy) and (f2), there is a constant C7 > 0 such that

|F(z,1) [tP@ 4 o f¢)*®, for (z,t) € Qx R.

<o

Therefore, for ||u|| <1 we have

d(u) > % fQ |Au|p (@) dl’ + fagﬁ |U|p( )dl' 2 + fQ |ul? @) d — Ch fQ |u|® @) dz
>3 1 (| AulP™) dx + [o B(x)|ulP®)dz] — Oy fo [ul*)da
> 7 ||qu+ = Calul|™
2Hth Callul|* ).

Since p™ < a~, the function t (2]? — Cot® ~P") is strictly positive
in a neighborhood of zero. It follows that there exist p > 0 and 5 > 0 such
that

P(u) =B VYu€ X :|lul| =p.

To apply the Mountain Pass Theorem, it suffices to show that
o(tu) — —oo  ast — +oo,

for a certain u € X.

Let uw € X \ {0}, by (f1), we may choose a constant

fQ ﬁ|Au\p(x) d:r+fan Bz) |u\p(x)dz

A> fQ |ulpT dz

, such that

F(z,t) > At uniformly in =z € Q.

Let t > 1 large enough, we have
¢w><hmﬂmw@m+bM@mmmm—b<amm

p(x)
fQ |Au|p @) dz + [5q (( |u|P(®) = S0, F(@ tw)de — [, <0, (@, tu)de
< tp+ [fQ |AU’p ) da + faﬂ |u|p ] — A" Jo ‘U|p+d$ - f|tu|§CA F(z,tu)dz
—l-Atp+ f\tu|<() lulP" da
fQ sl AufPte) d$+faﬂ |U|p dz] — AP o [ulP" da + C1,

where C7 > 0 is a constant which implies that

o(tu) — —oo  ast — +oo.
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964 A. Ourraout

It follows that there exists e X such that ||e|| > p and ¢(e) < 0. According
to the Mountain Pass Theorem, ¢ admits a critical value 7 > C’ which is
characterized by

7= inf sup o(h(t
S (h(1))

where
F={heC([0,1],X) : h(0)=0 and h(l) =e}.

4. The non-variational method

We define the operators

(Au, v) :/ ]Au\p(x)_Qu.Avdx—i—/ B(x) |uP®~2yvds
Q o9

and
(Bu,v) = / f(z,w)vdx, Vv e X,
Q

where A, B : X — X*.
We recall the interesting proposition,

Proposition 4.1. (cf.[8])

i) A: X — X* is a continuous, bounded and strictly monotone opera-
tor.

ii) A is a mapping of type (S4), i.e. if u, — u in X and

limsup,, o < A(un) — A(u), u, —u ><0, then u, — u in X.

iii) The operator A: X — X* is a bounded homeomorphism .

So, we have the following lemma.

Lemma 4.1. The operator A~' o B is compact continuous from X to X
where A~ is the inverse operator of A.

Proof.  Let (u,), be a bounded sequence of X, and then up to a sub-
sequence denoted also by (up)n, there exists u € X such that u, — w in
L) (Q) therefore, from lemma 2.1 we infer that Bu, is strong convergent
in X*. Since A™! is a bounded homeomorphism then A~! o B is strong
convergent in X .

The main result of this section reads as follows:
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Theorem 4.1. Suppose that the Carathéodory function f satisfies (fo)

with a(z) < p~, then the problem (P) has a solution in X.

Set Lyu = ABu.

Proof. We consider the equation
(4.1) Au = Lyu.

The solutions of (4.1) are uniformly bounded for A € [0, 1], if not, then
there exists a sequence of solutions (uy )y of (4.1) such that || u, [|— +oo
and

[ 080 do+ [ @)henP®)de = [ Auf @, un)und,
Q o0 Q

with (Ay)n C [0,1]. In view of (fp) we have

/)\nf(a:,un)undx < 5/ |un|p($)dm+0(€),
Q 0

with € > 0 is small enough, because a(z) < p(x). So we deduce that (uy)n
is bounded, which is a contradiction.

Let choose a radius R > 0 which all solutions of (4.1) are in the ball
B(0, R). Applying the Leray-Schauder degree, proposition 2.5, (because
now it is well defined) so we entail that

deg(I — A7 o Ly,B(0,R),0) = deg(I— A" o Loy, B(0,R),0)
= deg(I - Ail © 07 3(07 R)? 0)7
where Lo = 0 and I is the identity mapping on X.

We point out that I — A~! o Ly has zero as a unique solution and thus
from proposition 2.5, we obtain

deg(I — A™' o L1, B(0, R),0) = deg(I — A~' o Ly, B(0, R),0) = 1,
and consequently there exists u € B(0, R) such that
Au— Bu=0

has at least a solution.
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