
http://revistas.ucn.cl
http://revistaproyecciones.cl
https://doi.org/issn.0717-6279-2019-04-0054
https://portal.issn.org/resource/ISSN/0717-6279#
https://orcid.org/0000-0003-4066-5608
https://creativecommons.org/licenses/by/4.0/


860 Rajat Kanti Nath

1. Introduction

The commutativity degree d(G) of a finite group G is the probability that
two randomly chosen elements of G commute (see [6]).

Therefore,

d(G) =
|{(x, y) ∈ G×G : xy = yx}|

|G|2 .

In the year 2001, Lescot [7] has computed d(D2n) and d(Q2n+1) where
D2n is a dihedral group

presented by ha, b : an = b2 = 1, bab−1 = a−1i and Q2n+1 is a quaternion
group presented by ha, b : a2n = 1, b2 = a2

n−1
, bab−1 = a−1i. It was shown

that

d(D2n)→
1

4
and d(Q2n+1)→

1

4

as |D2n|→∞ and |Q2n+1 |→∞.
Then Lescot asked, “whether there are other natural families of groups

with the same property”.

Let Gn be a family of finite non-abelian groups such that |Gn| → ∞
as n → ∞. Then the limit of d(Gn) as n → ∞ is called the asymptotic
commutativity degree of Gn. In this regard, the problem posed by Lescot
can be restate in the following way:

Question 1: Is there any family of finite groups other than D2n and Q2n+1
whose asymptotic commutativity degree is 14?

In the year 2008, Doostie and Maghasedi [2] have computed the com-
mutativity degree of the following classes of finite groups:

G1(m,n) = ha, b, c : a2 = bn = c2m = 1, c−1aca = 1, c−1bcb = 1i and

G2(m,n) = ha, b, c : a2n = b2
n
= c2 = 1, c−1ac = b, c−1bc = ai.

They have shown that

d(G1(m,n)) =

⎧⎪⎨⎪⎩
n+ 3

4n
, if n is odd

n+ 6

4n
, if n is even

and d(G2(m,n)) =
2n + 3

2n+2
.

Therefore, as n tends to infinity we have

d(G1(m,n))→ 1

4
and d(G2(m,n))→ 1

4
.
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Thus the families G1(m,n) and G2(m,n) give affirmative answer to Ques-
tion 1.

In the year 2010, Castelaz (see [1, Chapter 4]) computed the asymptotic
commutativity degree for several different classes of finite groups including
the dicyclic groups Q4m presented by ha, b : a2m = 1, b2 = am, bab−1 =
a−1i and the semidihedral groups SDn presented by ha, b : a2

n−1
= b2 =

1, bab−1 = a−1+2
n−2i. Castelaz showed that

d(Q4m)→
1

4
and d(SDn)→

1

4
,

as the orders of Q4m and SDn tend to infinity.
In 2013, the author has computed d(CnθC2m), where θ : C2m −→

Aut(Cn) is the homomorphism such that θ(b), for a generator b of C2m,
is the inversing automorphism of Cn (see [9]). The author also have shown
that

d (Cn ×θ C2m)→
1

4
as n→∞.

Recently, Dutta [3] have shown that the asymptotic commutativity degree
of the group M2m,n for n > 2 presented by ha, b : an = b2m = 1, bab−1 =
a−1i is 14 .

It is worth mentioning that Erovenko and Sury [4] have computed d(A o
B) where A,B are two finite abelian group and o stands for wreath product.
They showed that d(A oB)→ 1

n2 as |A|→∞ if B is fixed of order n > 1.
Doostie and Maghasedi [2] have also computed the commutativity de-

gree of the groups namely G3(m,n) presented by

ha, b, c : a2n−1 = c2m = 1, b2 = a2
n−2

, b−1aba = c−1aca = c−1bcb = 1i.
They have shown that

d(G3(m,n)) =
2n−3 + 3

2n
and so d(G3(m,n))→ 1

8
as n tends to infinity. Motivated by these facts one may ask the following
question.

Question 2: Let k > 1 be any positive integer. Is there any family of
finite groups whose asymptotic commutativity degree is 1k?

In this paper, we answer Question 2 affirmatively. Further we shall
show that the reciprocal of every positive integer can be realized as d(G)
for some finite group G. It is worth mentioning that the central problem
in the study of commutativity degree of finite groups is to find the rational
numbers in the interval (0, 1] that can be realized as d(G) for some finite
group G.

rvidal
Cuadro de texto
831



862 Rajat Kanti Nath

2. Main Results

We begin with the following three useful results.

Lemma 1. [5] For any two finite group H and K we have

d(H ×K) = d(H)d(K).

Proposition 2. [10] If G is a finite p-group, where p is a prime, and G0 ⊆
Z(G), then

d(G) =
1

|G0|

⎛⎜⎜⎜⎝1 + X
K≤G0,

G0/K cyclic

(p− 1) |G0 : K|
p |G : K∗|

⎞⎟⎟⎟⎠ .

where K∗ = {x ∈ G : [G,x] ⊆ K} ≤ G and G
K∗
∼=
Q
(Cpni × Cpni ) with

p ≤ pni ≤ pn1 = pk = |G0 : K|.

A consequence of the above results is given below.

Corollary 3. Let G be a finite group and |G0| = p, a prime. If G0 ⊆ Z(G),
then G

Z(G)
∼= (Cp ×Cp)

s, for some s ≥ 1, and

d(G) =
1

p

µ
1 +

p− 1
p2s

¶
.

Proof. If G0 ⊆ Z(G) then G is nilpotent of class 2. Hence, G =
P1 × P2 × · · · × Pk where Pi’s are Sylow pi-subgroups of G corresponding
to the primes pi dividing |G|. Since G0 = P 01 × P 02 × · · · × P 0k and |G0| = p
we must have |P 01| = p and |P 02| = · · · = |P 0k| = 1, assuming that P1 is
a Sylow p-subgroup. Therefore, P2, . . . , Pk are abelian groups and hence
Z(G) = Z(P1)× P2 × · · · × Pk. By [10, Proposition 2], it follows that

G

Z(G)
∼=

P1
Z(P1)

∼= (Cp × Cp)
s(2.1)

for some s ≥ 1. Again, by Lemma 1 and Proposition 2, we have

d(G) =
mY
i=1

d (Pi) = d(P1) =
1

p

µ
1 +

(p− 1)|P 01 : {1}|
p|P1 : {1}∗|

¶
(2.2)
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since K = {1} is the only proper subgroup of P 01 such that P 01/K is cyclic.
Hence, the result follows from (2.1) and (2.2) noting that {1}∗ = Z(P1).
2

We now state and prove the first main result of this section which give
affirmative answer to Question 2.

Theorem 4. There exists a family of finite groups having asymptotic com-
mutativity degree 1

k for every integer k > 1.

Proof. Let k = pk11 pk22 · · · pkmm be the prime factorization of k. Consider
the families ES(ni, pi) of extra-special pi-groups of order p

2ni+1
i for i =

1, 2, . . . ,m. By Lemma 1 and Corollary 3, we have

d((ES(ni, pi))
ki) =

Ã
1

pi
+

pi − 1
p2ni+1i

!ki

where (ES(ni, pi))
ki is the direct product of ki copies of ES(ni, pi).

Hence, the result follows from Lemma 1, considering the family

(ES(n1, p1))
k1 × (ES(n2, p2))k2 × · · · × (ES(nm, pm))km

obtained by extra-special p-groups noting that

d((ES(ni, pi))
ki)→ 1

pkii
as ni →∞.

2

The following theorem shows that the reciprocal of every positive integer
can be realized as d(G) of some finite group G.

Theorem 5. There exists a finite group G such that d(G) = 1
n for every

positive integer n.

Proof. We shall prove the theorem by induction on n. For n = 1, we
may take G to be any abelian group. If n = 2, we may take, G = S3. So,
assume that n ≥ 3 and that the theorem is true for all positive integers k
less than n.

Case 1. n ≡ 0 or 2 (mod 4). In this case, n = 2α.m, where α,m are
positive integers and m is odd. Clearly m < n. So, by induction hypothesis
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