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1. Introduction

One of the most prominent fixed point theorem since the famous “Banach
contraction principle” [5] in 1922 is undeniably the Kannan fixed point
theorem. It is a well known fact that every Banach contraction mapping is
continuous. In 1968, Kannan [21] showed that a contractive mapping with
a fixed point need not be necessarily continuous in proving the following
result:

Theorem 1.1. [17] Let (X, d) be a complete metric space and T : X −→
X be a mapping such that

d(Tx, Ty) ≤ k
n
d(x, Tx) + d(y, Ty)

o
for all x, y ∈ X and k ∈

h
0, 1/2

´
. Then T has a unique fixed point z ∈ X,

and for any x ∈ X the sequence of iterates
n
Tnx

o
converges to z.

The importance of the above result lies in the fact that Kannan’s theorem
characterizes the completeness of the metric space. This was proved by
Subrahmanyam [29] in 1975.

Theorem 1.1 is one of the several generalizations of the Banach contraction
principle which were derived either by changing the contraction condition
or by changing the space to a more generalized space (refer to [2], [10], [11],
[12], [26], [30],among others). In this regard, Bakhtin [4] in 1989 introduced
b-metric spaces to generalize Banach fixed point theorem. In 1993, Czerwik
[9] formally defined the notion of b-metric spaces as follows.

Definition 1.1. [9] Let X be a non empty set and s ≥ 1 be a given real
number. A function d : X × X −→ [0,∞) is called b-metric if it satisfies
the following properties.

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x); and

3. d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space with coefficient s.

Since then many authors have generalized Banach fixed point theorem in
b-metric spaces (refer to [1], [18], [19], [22], [23], [28] and the references
therein).
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Some fixed point theorems for generalized Kannan type mappings ...793

Example 1. It is evident from the definition that every metric is also a
b-metric with coefficient 1. A few more examples (refer [6], [27]) are given
below.

1. The set lp(R) =

½
{xn} ⊂ R :

P∞
n=1 |xn|p < ∞

¾
with 0 < p < 1,

together with the function d : lp(R)× lp(R) −→ R given by

d(x, y) =

Ã ∞X
n=1

|xn − yn|p
! 1

p

is a b-metric space with coefficient 2
1
p .

2. The set Lp[0, 1], (0 < p < 1) of all real functions x(t), t ∈ [0, 1] whereR 1
0 |x(t)|dt <∞ is a b-metric space with coefficient 2

1
p if we define the

b-metric d : Lp[0, 1]× Lp[0, 1] −→ R by

d(x, y) =

µZ 1

0

¯̄̄
x(t)− y(t)

¯̄̄p
dt

¶ 1
p

.

3. Let (X, d0) be a metric space and define d(x, y) = d0(x, y)p, where
p > 1 is a real number. Then (X, d) is a b-metric space with coefficient
2p−1.

It may be noted here that a b-metric need not be always continuous in the
topology generated by it (refer Example 2.6 of [24]). Moreover, the notion
of convergent sequence, Cauchy sequence, completeness, etc. may as well
be defined accordingly in b-metric spaces.

Kannan’s fixed point theorem got its due attention and some authors gave
an attempt to extend his result (refer to [15], [20], [25], [26], [31]). In this
paper, we also try to extend the result of Kannan using the following class
of subadditive altering distance functions.

Definition 1.2. A function φ : [0,∞) −→ [0,∞) is said to be a subaddi-
tive altering distance function if

(i) φ is an altering distance function [15], (i.e., φ is continuous, strictly
increasing and φ(t) = 0 if and only if t = 0)

(ii) φ(x+ y) ≤ φ(x) + φ(y) ∀ x, y ∈ [0,∞)
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794 N. Haokip and N. Goswami

Example 2. It can be easily seen that the functions φ1(x) = kx for some
k ≥ 1, φ2(x) = n

√
x, n ∈ N, φ3(x) = log(1+x), x ≥ 0 and φ4(x) = tan−1 x

are such subadditive altering distance functions.

Here we note, if φ is sub-additive, then for any non-negative real number
k < 1

φ (d(x, y)) ≤ kφ (d(a, b)) d(x, y) ≤ k0d(a, b)

for some k0 < 1.

2. Main results

Consider φ as a subadditive altering distance function and the b-metric d
is assumed to be continuous in the topology generated by it.
We derive some fixed point results among which one of them is a general-
ization of a result given by Górnicki in [17].

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient
s ≥ 1 and let T : X −→ X be a mapping such that there exists p < 1

2s+1
satisfying

φ (d(Tx, Ty)) ≤ p

½
φ (d(x, y)) + φ (d(x, Tx)) + φ (d(y, Ty))

¾
(2.1)

for all x, y ∈ X. Then T has an unique fixed point z ∈ X, and for any
x ∈ X the sequence of iterates {Tnx} converges to z and for q = 2p

1−p < 1,

d(Tn+1x, Tnx) ≤ qnd(x, Tx), n = 0, 1, 2, . . .

Proof. For an arbitrary element x ∈ X, let u = Tx. Then

φ (d(u, Tu)) = φ (d(Tx, Tu)) ≤ p

½
φ (d(x, u))+φ (d(x, Tx))+φ (d(u, Tu))

¾
that is,

φ (d(u, Tu)) ≤ qφ (d(x, Tx)) where q =
2p

1− p
< 1.

Thus
d(u, Tu) ≤ q0d(x, Tx)(2.2)
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Some fixed point theorems for generalized Kannan type mappings ...795

for some q0 < 1. Without loss of generality, we assume q0 = q.

Now, for an arbitrary point x0 ∈ X consider the sequence {xn} where
xn+1 = Txn, n = 0, 1, 2, . . .. For m,n ∈ N with m > n, we have
d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .+ sm−n+1d(xm−1, xm)
≤ d(Tx0, x0)

¡
sqn + s2qn+1 + . . .+ sm−n+1qm

¢
≤ qn−1d(Tx0, x0)

¡
sq + (sq)2 + . . .+ (sq)m

¢
≤ qn−1d(Tx0, x0)

1
1−sq , since sq < 1

−→ 0, as n→∞ , showing that {xn} is a Cauchy sequence in H,
which is complete. Therefore, there exists z ∈ H such that

lim
n→∞

xn = z .

Now, from (2.1) we get φ (d(Tz, z)) ≤ φ
¡
sd(Tz, Txn) + s2d(Txn, xn) + s2d(xn, z)

¢
≤ sφ (d(Tz, Txn)) + s2φ (d(Txn, xn)) + s2φ (d(xn, z))
≤ sp {φ (d(z, xn)) + φ (d(z, Tz)) + φ (d(xn, Txn))}
+ s2φ (d(Txn, xn)) + s2φ (d(xn, z)) ,

or, (1− sp)φ (d(Tz, z)) ≤ (sp+ s2) {φ (d(z, xn)) + φ (d(Txn, xn))}
≤ (sp+s2) {φ (d(z, xn)) + φ (qnd(Tx0, x0))} Since the above relation is true
for all n ∈ N and 1− sp 6= 0, we have

φ (d(Tz, z)) −→ 0, as n→∞ ,

showing that d(Tz, z) = 0. To show the uniqueness of the fixed point z, let
w ∈ X be another fixed point of T . Then φ (d(z,w)) = φ (d(Tz, Tw)) ≤
p {φ (d(z, w)) + φ (d(z, Tz)) + φ (d(w, Tw))}
≤ pφ (d(z,w)) . Since φ is strictly increasing and p < 1

2s+1 , this will be true
iff d(z,w) = 0.
Finally, from (2.2) we have d(Tn+1x, Tnx) ≤ qd(Tn−1x, Tnx) , where q =
2p
1−p < 1 that is,

d(Tn+1x, Tnx) ≤ qnd(x, Tx), n = 0, 1, 2, . . .

2

Example 3. Consider the complete b-metric space (X, d) with X = [0, 1]
and d(x, y) = |x − y| for all x, y ∈ X. Let T : X −→ X be given by
Tx = x

2 for all x ∈ X. Then for φ(t) =
√
t, we have φ (d(Tx, Ty)) <

1
3

½
φ (d(x, y)) + φ (d(x, Tx)) + φ (d(y, Ty))

¾
¯̄
x
2 −

y
2

¯̄
< 1

3

©
|x− y|+

¯̄
x− x

2

¯̄
+
¯̄
y − y

2

¯̄ª
1
6 |x − y| < 1

6 {|x|+ |y|} , which is true for all x, y ∈ X. Thus T is a
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796 N. Haokip and N. Goswami

continuous map satisfying (2.1) and 0 is its fixed point, which is unique.
Also, if x0 is any point of X, then the sequence {Tnx0} =

©x0
2n
ª
converges

to 0.

Consider the function

Tx =
n

x2, 0 ≤ x < 10, x = 1

which has a discontinuity at x = 1. Similar calculation shows that T is a
map satisfying (2.1) and 0 is its fixed point, which is unique. And if x0 is
any point of X, then the sequence {Tnx0} =

©x0
2n
ª
converges to 0.

Corollary 2.2. Let (X,d) be a complete b-metric space and T : X −→ X
be a mapping such that

d(Tx, Ty) ≤ p

½
d(x, y) + d(x, Tx) + d(y, Ty)

¾
∀ x, y ∈ X

where p < 1
2s+1 . Then T has a unique fixed point z ∈ X and for every

x0 ∈ X, the sequence {Tnx0} converges to z.

Proof. The result follows from Theorem 2.1 on taking φ(x) = x, x ∈ X.
2

Corollary 2.3. Let (X,d) be a complete b-metric space and T : X −→ X
be a continuous mapping such that for some positive integer k

φ
³
d(T kx, T ky)

´
≤ p

n
φ (d(x, y)) + φ

³
d(x, T kx)

´
+ φ

³
d(y, T ky)

´o
for some p < 1

2s+1 and for all x, y ∈ X. Then there exists an unique fixed
point of T .

Proof. Applying Theorem 2.1 to the self mapping S = T k, we get that
S has an unique fixed point, say z, so that T kz = Sz = z.
Since T k+1z = Tz,

STz = T k(Tz) = T k+1z = Tz ,

and so Tz is a fixed point of S. By the uniqueness of the fixed point of S,
we get Tz = z. 2 Taking φ(x) = log(1+ x), we get the following result as

a particular case of Theorem 2.1.
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Corollary 2.4. Let (X, d) be a complete b-metric space and let T :
X −→ X be a mapping such that for p < 1

2s+1 , the relation

{1 + d(Tx, Ty)}
1
p < e (1 + d(x, y)) (1 + d(x, Tx)) (1 + d(y, Ty))(2.3)

holds for all x, y ∈ X. Then T has a unique fixed point z ∈ X, and for any
x ∈ X the sequence of iterates {Tnx} converges to z and for q = 2p

1−p ,

d(Tn+1x, Tnx) ≤ qnd(x, Tx), n = 0, 1, 2, . . .

Example 4. Consider the b-metric space (X, d), where X = [0, 1] and
d(x, y) = |x− y|2 for all x, y ∈ X. Define the mapping T : X −→ X by

Tx =
x

k
∀ x ∈ X

for some k ∈N. Then p < 1
5 and

{1 + d(Tx, Ty)}5 =
Ã
1 +

|x− y|2
k2

!5
≤
µ
1 +

1

k2

¶5
and

e (1 + d(x, y)) (1 + d(x, Tx)) (1 + d(y, Ty)) ≥ e.

Condition (2.3) is satisfied for k ≥ 3 and by Corollary 2.4 T has an unique
fixed point, which is 0 here. Moreover, for an arbitrary (but fixed) point
x0 ∈ X, the sequence of iterates

© x0
kn
ª
converges to the fixed point 0.

On the other hand, if d(x, y) = |x− y|, then T satisfies (2.3) for k ≥ 2.

Theorem 2.5. Let (X, d) be a complete b-metric space with coefficient
s ≥ 1 and let T : X −→ X be a mapping such that there exists p1, p2, p3
with p1 + p2 + p3 < 1 and sp2 < 1 satisfying

φ (d(Tx, Ty)) ≤ p1φ (d(x, y)) + p2φ (d(x, Tx)) + p3φ (d(y, Ty))(2.4)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, and for any x ∈ X
the sequence of iterates {Tnx} converges to z and for q = p1+p2

1−p3 < 1,

d(Tn+1x, Tnx) ≤ qnd(x, Tx), n = 0, 1, 2, . . .
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798 N. Haokip and N. Goswami

Proof. The proof is similar to the proof of Theorem 2.1. 2 On consid-
ering (X, d), a metric space and φ(x) = x in the above result, we get the
result given in [17] as a particular case.

Following [16], we get a characterization for the completeness of (X, d)
using the mapping T , with the help of the the properties of the subadditive
altering distance function φ.

Theorem 2.6. For a b-metric space (X, d), if every mapping T : X −→
X satisfying (2.1) for some 0 ≤ p < 1

2s+1 has an unique fixed point, then
X is complete.

It is worth mentioning that if (X, d) is a complete b-metric space and T is
a self map on X such that for some 0 ≤ p < 1

2s+1

φ (d(Tx, Ty)) ≤ p

½
φ (d(x, Tx)) + φ (d(y, Ty))

¾
∀ x, y ∈ X

then from Theorem 2.1, T has a unique fixed point z ∈ X and for every

x0 ∈ X, the sequence
n
Tnx0

o
converges to z.

Following the proof of Theorem 2.1, we get the following result and derive
the Kannan fixed point theorem as a consequence.

Theorem 2.7. Let (X, d) be a complete b-metric space and let T : X −→
X be a mapping such that there exists p < 1

2s satisfying

φ (d(Tx, Ty)) ≤ p

½
φ (d(x, Tx)) + φ (d(y, Ty))

¾
(2.5)

for all x, y ∈ X. Then T has a unique fixed point z ∈ X, and for any x ∈ X
the sequence of iterates {Tnx} converges to z and for q = p

1−p < 1,

d(Tn+1x, z) ≤ qnd(x, Tx), n = 0, 1, 2, . . .

We note that when (X, d) is a complete metric space and φ(x) = x in the
above theorem, we get Theorem 1.1, the Kannan fixed point theorem.

Example 5. Consider the complete b-metric space (X,d) where

X = [0, 1]∪[2,∞) and d(x, y) = {min {x+y, 2}, x 6= y0, x = y
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If φ(t) = log(1 + t), then condition (2.5) reduces to

{1 + d(Tx, Ty)}2 < e {1 + d(x, Tx)} {1 + d(y, Ty)}(2.6)

Let T : X −→ X be defined by

Tx =
n
12 , 0 ≤ x ≤ 11

2
− 1

x
, x ≥ 2

If x, y ∈ [0, 1], then (2.6) is trivially satisfied.
For 2 < x < y, we have

[1 + d(Tx, Ty)]2 =

∙
1 +min

½
1− 1

x
− 1

y
, 2

¾¸2
< 4

and

e {1 + d(x, Tx)} {1 + d(y, Ty)} ≥ 9 e .

When x ∈ [0, 1] and y ≥ 2, then

[1 + d(Tx, Ty)]2 =

∙
1 +min

½
1− 1

y
, 2

¾¸2
< 4

and

e {1 + d(x, Tx)} {1 + d(y, Ty)} = 3e
µ
1 + x+

1

2

¶
≥ 9
2
e .

Thus T satisfies (2.6) and by Theorem 2.7, T has a unique fixed point which
in this case is x = 1

2 . For an arbitrary x0 ∈ X, the sequence of iterates
{Tnx0} converges to 1

2 . In fact, T
2x = 1

2 for all x ∈ X.
We note that s = 1, p < 1

2 and sp < 1. If we consider the b-metric defined
by

d(x, y) = {min {x+ y, 2}2, x 6= y0, x = y

then s = 2 and we still have sp < 1. Similar calculation shows that T
satisfies the conditions of Theorem 2.7 and we get the result.

Theorem 2.8. For a b-metric space (X, d), if every mapping T : X −→
X satisfying (2.5) for some p < 1

2s has a unique fixed point, then X is
complete.
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Proof. Following the proof of Theorem 2.6, we get the result. 2

Remark 1. Since sequentially compact b-metric spaces are complete,
the completeness condition in Theorem 2.7 may be replaced by sequential
compactness.

Boundedly compactness and T -orbital compactness of X

A boundedly compact metric space ([14], [16]) is a metric space X in which
every bounded sequence in X has a convergent subsequence. The same
notion may be defined in the case of b-metric spaces. The class of bound-
edly compact b-metric spaces is larger than that of sequentially compact
spaces as the the b-metric space R of real numbers with the usual metric
is not sequentially compact but boundedly compact. In the next result p
is independent of the coefficient s of the b-metric space.

Theorem 2.9. Let (X, d) be a boundedly compact b-metric space and
T : X −→ X be a continuous mapping satisfying (2.5) for some 0 ≤ p < 1

2 .
Then T has a unique fixed point z ∈ X and for every x0 ∈ X, the sequence
{Tnx0} converges to z.

Proof. Let x0 be an arbitrary point ofX. Consider the iterated sequence
{xn}, where xn = Tnx0 for every n ∈N. We denote d(xn, xn+1) by λn and
suppose that λn > 0 for all n ∈ N. Then using (2.5), we have φ(λn) =
φ
¡
d(Tnx0, T

n+1x0)
¢
= φ

¡
d
¡
T (Tn−1x0), T (Tnx0)

¢¢
≤ p

n
φ
¡
d(Tn−1x0, Tnx0)

¢
+ φ

¡
d(Tnx0, T

n+1x0)
¢ o

= pφ(λn−1) + pφ(λn) This implies

(1− p)φ(λn) < pφ(λn−1) ∀ n ∈ N .(2.7)

Since 1− p ≥ p, it follows that

λn < λn−1 ∀ n ∈ N

showing that the sequence {λn} of positive real numbers is strictly decreas-
ing sequence and hence convergent, say,

lim
n→∞

λn = λ .
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Now, form,n ∈Nwith n < m, we have φ (d(xm, xn)) ≤ p

½
φ (d(xm−1, xm)+

φ (d(xn−1, xn)
¾

= p

½
φ(λm−1) + φ(λn−1)

¾
. As m,n→∞, we have

φ (d(xm, xn)) ≤ φ(λ) .

This implies d(xm, xn) ≤ λ as m,n→∞, showing that {xn} is a bounded
sequence. Therefore, {xn} has a subsequence which converges to, say, z,
i.e.,

lim
k→∞

xnk = z .

By the continuity of T , we have

Tz = T

µ
lim
k→∞

Tnkx0

¶
= lim

n→∞
Tnk+1x0 = z ,

which proves z is a fixed point of T .
Finally, if w is another fixed point of T , then φ (d(z, w)) = φ (d(Tz, Tw))
≤ p {φ (d(z, w)) + φ (d(z, Tz)) + φ (d(w, Tw))} , that is,

(1− p)φ (d(z,w)) ≤ 0 ,

which shows z = w, and thus z is the unique fixed point of T . 2

Example 6. Consider the boundedly compact b-metric space (X, d),
where X = [0,∞) and

d(x, y) = {x + y, x 6= y0, x = y

Define T : X −→ X by

Tx =
n
12, 0 ≤ x ≤ 21

x
, x > 2

For φ(t) = t, we have condition (2.5) as

d(Tx, Ty) <
1

2

½
d(x, Tx) + d(y, Ty)

¾
.(2.8)

Now, for x 6= y and x, y > 2, we have

d(Tx, Ty) =
1

x
+
1

y
< 1
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and
1

2
{d(x, Tx) + d(y, Ty)} = 1

2

½
x+

1

x
+ y +

1

y

¾
≥ 2.

Again, for 0 ≤ x ≤ 2 and y > 2, we have

d(Tx, Ty) =
1

2
+
1

y
< 1

and
1

2
{d(x, Tx) + d(y, Ty)} = 1

2

½
x+

1

2
+ y +

1

y

¾
> 1 .

Thus T satisfies (2.8) and by Theorem 2.9, T has a unique fixed point which
is x = 1

2 . Since T
2x = 1

2 , we see that for every x0 ∈ X, the sequence of
iterates {Tnx0} converges to 1

2 .

Garai et al. [16] defined T -orbitally compact metric spaces and derived a
fixed point result for the same. The definition of T -orbitally compactness
can be extended to b-metric spaces as follows.

Definition 2.1. [16] Let (X, d) be a b-metric space and T be a self map-
ping on X. The orbit of T at the point x ∈ X is defined as the set

Ox(T ) =
n
x, Tx, T 2x, T 3x, . . .

o
and X is said to be T -orbitally compact if every sequence in Ox(T ) has a
convergent subsequence for all x in X.

As mentioned by Garai et al. [16] a T -orbitally compact metric space need
not be complete. For more details of T -orbitally compact metric spaces one
may refer to Garai et al. [16].

Theorem 2.10. Let (X, d) be a T -orbitally compact b-metric space with
T satisfying (2.5) with p < 1

2 and sp < 1. Then T has a unique fixed point
w and for every x ∈ X,

lim
n→∞

Tnx = w.
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Proof. Let x0 ∈ X be arbitrarily chosen but fixed, and consider the
sequence {xn}, where xn = Tnx0 for all n ∈ N. Denoting d(xn, xn+1) by
µn, we have from (2.5)

φ(µn) ≤ p

½
φ(µn−1) + φ(µn)

¾
and since φ is strictly increasing and p < 1

2 , we get

µn < µn−1,

which shows that the sequence {µn} of non-negative real numbers is a
decreasing sequence and hence convergent. Since X is T -orbitally compact,
{xn} has a convergent subsequence, {xnk}, which converges to, w ∈ X, say.
Now,

lim
n→∞

µnk = lim
n→∞

d (xnk , xnk+1) = d
³
lim
n→∞

xnk , limn→∞
xnk+1

´
= d(z, z) = 0.

This shows that the convergent sequence {µn} contains a subsequence {µnk}
which converges to 0 and therefore

lim
n→∞

µn = 0.

For every m,n ∈ N, we have φ (d(xn, xm)) ≤ p

½
φ
¡
d(Tn−1x, Tnx)

¢
+

φ
¡
d(Tm−1x, Tmx)

¢¾
= p

½
φ (µn−1) + φ (µm−1)

¾
−→ 0 as n,m→∞. This implies

d(xn, xm) −→ 0 as n,m→∞

showing that {xn} is a Cauchy sequence, and therefore

lim
n→∞

xn = w.

Now, φ (d(w, Tw)) ≤ φ

µ
sd(w, Tn+1x) + sd(Tn+1x, Tw)

¶
≤ sφ (d(w, xn+1))+sp

½
φ (d(xn, xn+1))+φ (d(w, Tw))

¾
that is, (1-sp)φ (d(w, Tw)) ≤

sφ (d(w, xn+1)) + spφ (d(xn, xn+1))
−→ 0 as n → ∞ which implies d(w, Tw) = 0, establishing that w
is a fixed point of T . The uniqueness of the fixed point is derived from
condition (2.5) and the monotonicity of φ. 2
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Example 7. Consider the incomplete b-metric space (X, d), where X =
(0,∞) and

d(x, y) = {x + y, x 6= y0, x = y

Define T : X −→ X by

Tx =
n
12, 0 < x < 21, x = 2

1

x
, x > 2

It can be easily seen that T is not continuous and X is T -orbitally compact.
For φ(x) = log(1 + x), we have condition (2.5) as

{1 + d(Tx, Ty)}2 < e {1 + d(x, Tx)} {1 + d(y, Ty)}

For x, y > 2, we have

{1 + d(Tx, Ty)}2 =
½
1 +

1

x
+
1

y

¾2
< 4,

e {1 + d(x, Tx)} {1 + d(y, Ty)} = e

½
1 + x+

1

x

¾½
1 + y +

1

y

¾
≥ 9e.

For 0 < x < 2 and y > 2, we have

{1 + d(Tx, Ty)}2 =
½
1 +

1

2
+
1

y

¾2
< 4,

e {1 + d(x, Tx)} {1 + d(y, Ty)} = e

½
1 + x+

1

2

¾½
1 + y +

1

y

¾
> 4e.

For 0 < x < 2 and y = 2, we have

{1 + d(Tx, T2)}2 =
½
1 +

1

2
+ 1

¾2
=
25

4
< 6,

e {1 + d(x, Tx)} {1 + d(2, T2)} = e

½
1 + x+

1

2

¾
{1 + 2 + 1} ≥ 6e.

For x > 2 and y = 2, we have

{1 + d(Tx, T2)}2 =
½
1 +

1

x
+ 1

¾2
< 6,

e {1 + d(x, Tx)} {1 + d(2, T2)} = e

½
1 + x+

1

2

¾
{1 + 2 + 1} > 12e.

Thus T satisfies condition (2.5) and therefore, by Theorem 2.10, T has a
unique fixed point, x = 1

2 . Also, for an arbitrary x0 ∈ X, it is easily seen
that T 2x0 =

1
2 so that the sequence of iterates {Tnx0} converge to the fixed

point x = 1
2 .
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Asymptotic regularity of T

In the previous section, Theorem 2.7 does not hold for p ≥ 1
2 . Here, we

try to raise the bound of p by assuming T to be an asymptotically regular
mapping. For a metric space (X, d), a mapping T : X −→ X is called
asymptotically regular [7] if

lim
n→∞

d(Tnx, Tn+1x) = 0 for all x ∈ X.

For further details in asymptotic regular mappings we refer to [3, 8] and
the references therein.

Theorem 2.11. Let (X, d) be a complete b-metric space and T : X −→
X be an asymptotically regular map satisfying (2.5) for some p with sp < 1.
Then T has a unique fixed point.

Proof. Let x ∈ X and consider the sequence {xn} where xn = Tnx, n ∈
N. For m > n, since T is asymptotically regular φ

¡
d(Tn+1x, Tm+1x)

¢
≤

p

½
φ
¡
d(Tnx, Tn+1x)

¢
+ φ

¡
d(Tm, Tm+1)

¢ ¾
−→ 0 as n→∞ Thus

d(Tn+1x, Tm+1x) −→ 0 as n→∞

showing that the sequence {xn} is a Cauchy sequence. Since X is complete,
there exists z ∈ X such that limn→∞ Tnx = z.

Again, φ (d(z, Tz)) ≤ φ

µ
sd(z, Tn+1x) + sd(Tn+1x, Tz)

¶
≤ sφ

¡
d(z, Tn+1x)

¢
+ sφ

¡
d(Tn+1x, Tz)

¢
≤ sφ (d(z, Tnx)) + sp

½
φ
¡
d(Tnx, Tn+1x)

¢
+ φ (d(z, Tz))

¾
That is,

(1− sp)φ (d(z, Tz)) ≤ sφ (d(z, Tnx)) + spφ
³
d(Tnx, Tn+1x)

´
.

Therefore, in the limiting case when n→∞, we have

(1− sp)φ (d(z, Tz)) = 0 d(z, Tz) = 0 .

Suppose that Tw = w with z 6= w. Then

φ (d(Tz, Tw)) ≤ p

½
φ(d(z, Tz)) + φ(d(w, Tw))

¾
= 0 ,
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implying Tz = Tw. But then we have

w = Tw = Tz = z ,

a contradiction. 2

Example 8. Consider the complete b-metric space (X, d) where X =
[0, 1] and d is the usual metric on X. It can be easily seen that the function
T : X −→ X defined by Tx = x

2 for all x ∈ X is asymptotically regular.
Since s = 1, we can take p < 1. Then for φ(t) = log(1 + t), condition (2.5)
reduces to

1 + d(Tx, Ty) < e
n
1 + d(x, Tx)

on
1 + d(y, Ty)

o
But we have, 1+d(Tx,Ty)=1+

¯̄
x
2 −

y
2

¯̄
≤ 1+

¯̄
x
2

¯̄
+
¯̄y
2

¯̄
≤
©
1 +

¯̄
x
2

¯̄ª ©
1 +

¯̄y
2

¯̄ª
≤ e

n
1 + d(x, Tx)

on
1 + d(y, Ty)

o
. By the above theorem, there exists a

unique fixed point. Here, x = 0 is the unique fixed point.
If we consider the b-metric d(x, y) = |x − y|2, then s = 2 and p < 1

2 .
Condition (2.5) in this case isn

1 + d(Tx, Ty)
o2

< e
n
1 + d(x, Tx)

on
1 + d(y, Ty)

o
and is satisfied by T and we get the same result as before.

Theorem 2.12. Let (X, d) be a complete b-metric space and T : X −→
X be an asymptotically regular map satisfying (2.1) for some p with sp < 1.
Then T has a unique fixed point.

Proof. Let x ∈ X and consider the sequence {xn} where xn = Tnx, n ∈
N. Form > n, since T is asymptotically regular, we have φ

³
d(Tn+1x, Tm+1x)

´
≤

p

½
φ (d(Tnx, Tmx)) + φ

¡
d(Tnx, Tn+1x)

¢
+ φ

¡
d(Tmx, Tm+1x)

¢¾
≤ kp

½
φ
¡
d(Tnx, Tn+1x)

¢
+ φ

¡
d(Tmx, Tm+1x)

¢ ¾
pφ
³
d(Tn+1x, Tm+1x)

´
, for some positive integer k, and so, φ

³
d(Tn+1x, Tm+1x)

´
≤

kp
1−p

½
φ
¡
d(Tnx, Tn+1x)

¢
+ φ

¡
d(Tmx, Tm+1x)

¢¾

rvidal
Cuadro de texto
778

rvidal
Cuadro de texto



https://bit.ly/2OYMcad
https://doi.org/10.2298/FIL1410037A


rvidal
Cuadro de texto
780

https://bit.ly/35QmEBU
https://bit.ly/2Br6H7t
https://bit.ly/2J4xf2B
https://bit.ly/2P1jUM9
https://bit.ly/2P2zE1m
https://bit.ly/32vRePo
https://bit.ly/35M4fX2
https://doi.org/j.issn:2095_2651.2016.01.009
https://doi.org/10.12732/ijpam,v109i3.13


https://doi.org/10.22130/SCMA.2017.23831
https://arxiv.org/abs/1707.06383
https://doi.org/10.1007/s11784-017-0402-8
https://doi.org/10.1186/187-1812-2012-126
https://doi.org/10.1186/187-1812-2012-126
https://doi.org/10.1155/2010/978121
https://bit.ly/2oMX5kU
https://doi.org/10.1155/2010/315398
https://doi.org/10.12691/tjant-1-1-4
https//doi.org/10.7508/ijmsi.2016.01.009
https://bit.ly/2MvzdLG
https://doi.org/10.22436/jnsa.009.11.03


rvidal
Cuadro de texto
782

https://doi.org/10.1186/1687-1812-2013-159
https://doi.org/10.1186/1687-1812-2013-296
https://doi.org/10.1007/BF01472580
https://doi.org/10.5269/bspm.v32i2.20896
https://doi.org/10.4067/S0716-09172013000400005

