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1. Introduction

One of the most prominent fixed point theorem since the famous “Banach
contraction principle” [5] in 1922 is undeniably the Kannan fixed point
theorem. It is a well known fact that every Banach contraction mapping is
continuous. In 1968, Kannan [21] showed that a contractive mapping with
a fixed point need not be necessarily continuous in proving the following
result:

Theorem 1.1. [17] Let (X,d) be a complete metric space and T : X —
X be a mapping such that

d(Tw, Ty) < k{d(z, Tx) + d(y, Ty) }

for all z,y € X and k € {O, 1/2). Then T has a unique fixed point z € X,

and for any x € X the sequence of iterates {T”x} converges to z.

The importance of the above result lies in the fact that Kannan’s theorem
characterizes the completeness of the metric space. This was proved by
Subrahmanyam [29] in 1975.

Theorem 1.1 is one of the several generalizations of the Banach contraction
principle which were derived either by changing the contraction condition
or by changing the space to a more generalized space (refer to [2], [10], [11],
[12], [26], [30],among others). In this regard, Bakhtin [4] in 1989 introduced
b-metric spaces to generalize Banach fixed point theorem. In 1993, Czerwik
[9] formally defined the notion of b-metric spaces as follows.

Definition 1.1. [9] Let X be a non empty set and s > 1 be a given real
number. A function d : X x X — [0,00) is called b-metric if it satisfies
the following properties.

1. d(z,y)=0 ifandonlyif x=y;
2.

U

(z,y) = d(y,z); and

) =
3. d(z,z) < sld(z,y) +d(y,2)], forall zy,ze€X.
The pair (X, d) is called a b-metric space with coefficient s.

Since then many authors have generalized Banach fixed point theorem in
b-metric spaces (refer to [1], [18], [19], [22], [23], [28] and the references
therein).
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Example 1. It is evident from the definition that every metric is also a
b-metric with coefficient 1. A few more examples (refer [6], [27]) are given
below.

1. The set [,(R) = {{xn} CR:Y2 |znlP < oo} with 0 < p < 1,
together with the function d : [,(R) x [,(R) — R given by

d(x,y) = (i [ — ynrp> '

n=1

1
is a b-metric space with coefficient 2r .

2. The set L,[0,1], (0 < p < 1) of all real functions x(t), t € [0, 1] where

fol |x(t)|dt < oo is a b-metric space with coefficient 9% if we define the
b-metric d : Lp[0,1] x Ly[0,1] — R by

e = ([ Joto) - y(t)]pdt)%

3. Let (X,d') be a metric space and define d(x,y) = d'(x,y)P, where

p > 1 is areal number. Then (X, d) is a b-metric space with coefficient
2r—L,

It may be noted here that a b-metric need not be always continuous in the
topology generated by it (refer Example 2.6 of [24]). Moreover, the notion
of convergent sequence, Cauchy sequence, completeness, etc. may as well
be defined accordingly in b-metric spaces.

Kannan’s fixed point theorem got its due attention and some authors gave
an attempt to extend his result (refer to [15], [20], [25], [26], [31]). In this
paper, we also try to extend the result of Kannan using the following class
of subadditive altering distance functions.

Definition 1.2. A function ¢ : [0, 00) — [0, 00) is said to be a subaddi-
tive altering distance function if

(i) ¢ is an altering distance function [15], (i.e., ¢ is continuous, strictly
increasing and ¢(t) =0 if and only if t =0)

(i) dz+y) <o) +o(y) V z,y€(0,00)
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Example 2. It can be easily seen that the functions ¢1(x) = kx for some
k> 1, ¢o(x) = Yz, n €N, ¢3(z) =log(1+z), >0 and ¢4(z) = tan™ ' =
are such subadditive altering distance functions.

Here we note, if ¢ is sub-additive, then for any non-negative real number
k<1
¢ (d(z,y)) < k¢ (d(a,b)) d(z,y) < K'd(a,b)

for some k' < 1.

2. Main results

Consider ¢ as a subadditive altering distance function and the b-metric d
is assumed to be continuous in the topology generated by it.

We derive some fixed point results among which one of them is a general-
ization of a result given by Gérnicki in [17].

Theorem 2.1. Let (X,d) be a complete b-metric space with coefficient
s>1andletT : X — X be a mapping such that there exists p < ﬁ
satisfying

2.1) ¢ (d(Tz,Ty)) < p{cb (d(z,y)) + ¢ (d(z,Tx)) + ¢ (d(y, Ty)) }

for all x,y € X. Then T has an unique fixed point z € X, and for any
x € X the sequence of iterates {T"x} converges to z and for ¢ = IQTPP <1,

d(T" 2, T"z) < ¢"d(x, Tx), n=0,1,2,...

Proof. For an arbitrary element x € X, let w = Tz. Then

¢ (d(u,Tu)) = ¢ (d(Tx, Tu)) < p{¢ (d(z,u))+ ¢ (d(z, Tx)) + ¢ (d(u, Tu)) }

that is,

2p

< 1.
1—p

¢ (d(u,Tu)) < q¢ (d(x,Tz)) where gq=

Thus
(2.2) d(u,Tu) < ¢'d(x, Tx)
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for some ¢’ < 1. Without loss of generality, we assume ¢’ = q.

Now, for an arbitrary point xg € X consider the sequence {x,} where
Tnt1 = Tz, n = 0,1,2,. For m,n € N with m > n, we have
d(xp, Tm) < sd(Tp, Tni1) + S d(mn+1, Tpio) + ...+ 8™ (21, 2m)
< d(Txo, o) (sq™ + 82" + ... + sm ”+1q )
< ¢"1d(Txo, x0) (sq + (sq)? + . ™)
< q”_ld(Tmo,xo)Tm , since sq < 1
— 0, as n — oo , showing that {z,} is a Cauchy sequence in H,
which is complete. Therefore, there exists z € H such that

nh—{%o Ty = 2 .
Now, from (2.1) we get ¢ (d(T'z,2)) < ¢ (sd(Tz, Txy) + $2d(Tan, x) + $%d(Tn, 2))
<3¢ (d(Tz,Txy)) + 820 (d(Txn, zn)) + 520 (d(zn, 2))
< sp{¢ (d(z,2n)) + ¢ (d(2,T2)) + ¢ (d(zn, Twn))}
+5%¢ (d(Tp, x0)) + 5% (d(zn, 2))

or, (1 —sp) ¢ (d(Tz,2)) < (sp+ %) {¢ (d(z,20)) + ¢ (d(Tp, x4))}
< (sp+52) {é (d(z,zn)) + ¢ (¢"d(Txo,20))} Since the above relation is true
for all » € N and 1 — sp # 0, we have

¢ (d(Tz,z)) — 0, as n— oo,

showing that d(T'z, z) = 0. To show the uniqueness of the fixed point z, let

w € X be another fixed point of 7. Then ¢ (d(z,w)) = ¢ (d(Tz,Tw)) <
p{o(d(z,w)) + ¢ (d(z,Tz)) + ¢ (d(w, Tw))}

< p¢ (d(z,w)) . Since ¢ is strictly increasing and p < T%H, this will be true
iff d(z,w)=0.

Finally, from (2.2) we have d(T"*lz, T"z) < qd(T" 'z, T"x) , where ¢ =
prp < 1 that is,

d(T" Mz, T"x) < ¢"d(x, Tx), n=20,1,2,...

Example 3. Consider the complete b-metric space (X, d) with X = [0, 1]
andd(zy):]x—y|fora11xy€X Let T : X — X be given by
Tz = % for all x € X. Then for ¢(t) = /t, we have ¢ (d(Tz,Ty)) <

%{¢(d( y) + (d(wa))+¢((Z/>T?J))}

541 <34 —ol+ o 51+ v~ 3]
oz —y| < {lz[+ |y} , which is true for all z,y € X. Thus T is a
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continuous map satistying (2.1) and 0 is its fixed point, which is unique.
Also, if zq is any point of X, then the sequence {T"xo} = {58} converges
to 0.

Consider the function
Tx:{ 22, 0<z<10, z=1

which has a discontinuity at x = 1. Similar calculation shows that T is a
map satisfying (2.1) and 0 is its fixed point, which is unique. And if zg is
any point of X, then the sequence {T"xy} = {3—2} converges to 0.

Corollary 2.2. Let (X,d) be a complete b-metric space andT : X — X
be a mapping such that

A(T2,Ty) < p{d(w.9) + dw,To) +d(u.Ty) | VayeX

where p < Tlﬂ Then T has a unique fixed point z € X and for every
xo € X, the sequence {T™xzo} converges to z.

Proof.  The result follows from Theorem 2.1 on taking ¢(x) =z, z € X.

Corollary 2.3. Let (X,d) be a complete b-metric space and T : X — X
be a continuous mapping such that for some positive integer k

o (d(The, Try)) < p {6 (d(x,y)) + ¢ (d(a, T"0)) + ¢ (d(y, T)) }

1
2s+1

for some p < and for all x,y € X. Then there exists an unique fixed

point of T'.

Proof. Applying Theorem 2.1 to the self mapping S = T%, we get that
S has an unique fixed point, say z, so that TFz = Sz = z.
Since TFHz = Tz,

STz=THTz) =T 2 =Tz,

and so T’z is a fixed point of S. By the uniqueness of the fixed point of S,
we get Tz = 2. Taking ¢(z) = log(1 + x), we get the following result as

a particular case of Theorem 2.1.
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Corollary 2.4. Let (X,d) be a complete b-metric space and let T :
X — X be a mapping such that for p < Tlﬂ, the relation

(2.3) {1+ d(Tz,Ty)}» <e(l+d(z,y)) (1 +d(z, Tx)) (1 + d(y, Ty))

holds for all x,y € X. Then T has a unique fixed point z € X, and for any

x € X the sequence of iterates {T"x} converges to z and for q = 127’)]9,

d(T" 2, T"z) < ¢"d(x, Txz), n=0,1,2,...

Example 4. Consider the b-metric space (X,d), where X = [0,1] and
d(x,y) = |v —y|? for all z,y € X. Define the mapping T : X — X by

Tx::E

E VeeX

for some k € N. Then p < % and

5
{1+ d(Tz,Ty)}® = B LY
T, LY - k2 — k2

and
e(l1+d(z,y) (1+d(z,Tx)) (1+d(y,Ty)) > e.

Condition (2.3) is satisfied for k > 3 and by Corollary 2.4 T' has an unique
fixed point, which is 0 here. Moreover, for an arbitrary (but fixed) point

xg € X, the sequence of iterates { {3} converges to the fixed point 0.
On the other hand, if d(x,y) = | — y|, then T satisfies (2.3) for k > 2.

Theorem 2.5. Let (X,d) be a complete b-metric space with coefficient
s>1andlet T: X — X be a mapping such that there exists p1, p2, ps3
with p1 + p2 + p3 < 1 and spy < 1 satisfying

(24) ¢(d(Tz,Ty)) < p1¢ (d(z,y)) + p2¢ (d(x, Tx)) + p3¢ (d(y, Ty))

for all z,y € X. Then T has a unique fixed point z € X, and for any x € X
the sequence of iterates {T"x} converges to z and for q = % <1,

d(T" 2, T"z) < ¢"d(x, Txz), n=0,1,2,...
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Proof.  The proof is similar to the proof of Theorem 2.1. On consid-
ering (X, d), a metric space and ¢(x) = x in the above result, we get the
result given in [17] as a particular case.

Following [16], we get a characterization for the completeness of (X,d)
using the mapping T', with the help of the the properties of the subadditive
altering distance function ¢.

Theorem 2.6. For a b-metric space (X, d), if every mapping T : X —
X satisfying (2.1) for some 0 < p < Tﬁrl has an unique fixed point, then
X is complete.

It is worth mentioning that if (X, d) is a complete b-metric space and 7' is

a self map on X such that for some 0 < p < ﬁ

6 (d(T, Ty)) < p{¢ (d(x, Tz)) + 6 (d(y, Ty)) } VooyeX

then from Theorem 2.1, T has a unique fixed point z € X and for every
xg € X, the sequence {T”xo} converges to z.

Following the proof of Theorem 2.1, we get the following result and derive
the Kannan fixed point theorem as a consequence.

Theorem 2.7. Let (X, d) be a complete b-metric space and let T : X —
X be a mapping such that there exists p < 2_15 satisfying

(2.5) 6 (d(Tz, Ty)) < p{¢ (d(x. Tx)) + 6 (d(y, Ty)) }

for all z,y € X. Then T has a unique fixed point z € X, and for any x € X
the sequence of iterates {T"x} converges to z and for q = Tin <1,

d(T" Mz, 2) < ¢"d(x,Tx), n=0,1,2,...

We note that when (X, d) is a complete metric space and ¢(x) = x in the
above theorem, we get Theorem 1.1, the Kannan fixed point theorem.

Example 5. Consider the complete b-metric space (X, d) where

X = [0,1]U[2, 00) and d(z,y) = {min {z+y,2}, x # y0, T=y
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If ¢(t) = log(1 4 t), then condition (2.5) reduces to
(2.6) {1 +d(Tz,Ty)}* < e {1 +d(z,Tz)} {1 +d(y, Ty)}

Let T : X — X be defined by

1
Ta::{ 12, 0<z<l=—=, x>2
xr

N =

If x,y € [0, 1], then (2.6) is trivially satisfied.
For 2 <z <y, we have

2 _ wfio 1 1)
14+ d(Tz,Ty)] —[1—|—mln{1 - y,QH <4
and
e{l+d(z,Tx)}{1+d(y,Ty)} >9e.

When z € [0,1] and y > 2, then

(14 d(Tz,Ty)*> = [1 —i—min{l — i,z}r <4

and
1 9
e{l+d(z,Tx)} {1+d(y,Ty)} = 3e (1 +z+ 5) > ¢ -
Thus T satisfies (2.6) and by Theorem 2.7, T has a unique fixed point which
in this case is x = % For an arbitrary xg € X, the sequence of iterates
{Tmxo} converges to 4. In fact, T?v =  for allz € X
We note that s =1, p < % and sp < 1. If we consider the b-metric defined
by
d(z,y) = {min {z + 9,2}, z#40, z=y

then s = 2 and we still have sp < 1. Similar calculation shows that T
satisfies the conditions of Theorem 2.7 and we get the result.

Theorem 2.8. For a b-metric space (X, d), if every mapping T : X —
X satisfying (2.5) for some p < 2% has a unique fixed point, then X is
complete.
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Proof. Following the proof of Theorem 2.6, we get the result.

Remark 1. Since sequentially compact b-metric spaces are complete,
the completeness condition in Theorem 2.7 may be replaced by sequential
compactness.

Boundedly compactness and T-orbital compactness of X

A boundedly compact metric space ([14], [16]) is a metric space X in which
every bounded sequence in X has a convergent subsequence. The same
notion may be defined in the case of b-metric spaces. The class of bound-
edly compact b-metric spaces is larger than that of sequentially compact
spaces as the the b-metric space R of real numbers with the usual metric
is not sequentially compact but boundedly compact. In the next result p
is independent of the coefficient s of the b-metric space.

Theorem 2.9. Let (X,d) be a boundedly compact b-metric space and
T : X — X be a continuous mapping satisfying (2.5) for some 0 < p < %
Then T has a unique fixed point z € X and for every xoy € X, the sequence
{T"xy} converges to z.

Proof. Let zg be an arbitrary point of X. Consider the iterated sequence
{zy}, where x,, = T"x¢ for every n € N. We denote d(xy,, n+1) by A, and
suppose that A\, > 0 for all n € N. Then using (2.5), we have ¢(\,) =
6 (d(T"0, T 20) = & (d (T(T™ 20), T(T"y)))

< p{¢ (d(T”_lxg, Tn$())) —+ (;5 (d(T”xo, Tn+1$0)) }

= pP(An—1) + pd(A,) This implies

(2.7) (1 =p)o(An) <pp(An—1) VneN.
Since 1 —p > p, it follows that
An < An—1 VneN

showing that the sequence {\,} of positive real numbers is strictly decreas-
ing sequence and hence convergent, say,

lim A, =\

n—oo
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Now, for m,n € N with n < m, we have ¢ (d(zm,, x,)) < p{d) (d(Tm—1,2m)+

6 (dlan-r2,) |

= p{¢()\m_1) + <z5()\n_1)}. As m,n — oo, we have

o (d(wﬂwwn)) < ¢()‘) .

This implies d(z,, xn) < A as m,n — oo, showing that {z,} is a bounded
sequence. Therefore, {z,,} has a subsequence which converges to, say, z,
ie.,

lim z,, =z .
—00

By the continuity of T', we have

Tz=T ( lim T”kggg) = lim Tty =2,
k—oo

n—oo

which proves z is a fixed point of 7.
Finally, if w is another fixed point of T, then ¢ (d(z,w)) = ¢ (d(Tz, Tw))
< p{¢ (d(z,w)) + ¢ (d(2,Tz)) + ¢ (d(w,Tw))}, that is,

(1—=p)¢(d(z,w)) <0,
which shows z = w, and thus z is the unique fixed point of 7T'.

Example 6.  Consider the boundedly compact b-metric space (X,d),
where X = [0, 00) and

d(z,y) ={z +y, =#yo, T=1y
DefineT : X — X by

1
Tx:{ 12, 0<2<2=, >2
x
For ¢(t) = t, we have condition (2.5) as
1
(2.8) d(Tz,Ty) < i{d(:v, Tx) + d(y, Ty)}.
Now, for x # y and x,y > 2, we have

1 1
d(Tw,Ty):;—i-; <1
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and

1 1
r+—+y+—p =22
Z Y

N

{d(e, Ta) + d(y, Ty)} =

Again, for 0 < x < 2 and y > 2, we have

1 1
d(Tz,Ty) = 5—%; <1

and

1 1 1 1
E{d(x,Tm)—i—d(y,Ty)}—E{x—i—é—i-y—i-;} >1.

Thus T satisfies (2.8) and by Theorem 2.9, T has a unique fixed point which

isx = % Since T?z = %, we see that for every xg € X, the sequence of

iterates {T"x¢} converges to 3 .

Garai et al. [16] defined T-orbitally compact metric spaces and derived a
fixed point result for the same. The definition of T-orbitally compactness
can be extended to b-metric spaces as follows.

Definition 2.1. [16] Let (X,d) be a b-metric space and T be a self map-
ping on X. The orbit of T" at the point © € X is defined as the set

0,(T) = {x,Tm,T2az,T3x, . }

and X is said to be T-orbitally compact if every sequence in O»(T') has a
convergent subsequence for all x in X.

As mentioned by Garai et al. [16] a T-orbitally compact metric space need
not be complete. For more details of T-orbitally compact metric spaces one
may refer to Garai et al. [16].

Theorem 2.10. Let (X, d) be a T-orbitally compact b-metric space with
T satistying (2.5) with p < % and sp < 1. Then T has a unique fixed point
w and for every x € X,

lim T"z = w.
n—oo
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Proof. Let 9 € X be arbitrarily chosen but fixed, and consider the
sequence {x,}, where x, = T"xq for all n € N. Denoting d(z,,Zn+1) by
fn, we have from (2.5)

(pn) < p{‘b(ﬂn—l) + (b(,un)}
and since ¢ is strictly increasing and p < %, we get

Un < Un—1,

which shows that the sequence {u,} of non-negative real numbers is a
decreasing sequence and hence convergent. Since X is T-orbitally compact,
{z,,} has a convergent subsequence, {x,, }, which converges to, w € X, say.
Now,

nh_)r{.lounk = 7lli_>r£10d(xnk,a:nk+1) =d (nh_{glo xnk,nli_)r%o xnk“) =d(z,z) = 0.

This shows that the convergent sequence {py, } contains a subsequence { iy, }
which converges to 0 and therefore

nh_)rgo tn = 0.
For every m,n € N, we have ¢ (d(zn,Tn)) < p{gb(d(T"‘lzn,T”x)) +
¢ (d(T™ e, T ))}

=Py ¢ (tn—1) + & (m-1)
0 as n,m — oo. This implies

| 5

d(xp, Tm) — 0 as n,m — 00
showing that {z,} is a Cauchy sequence, and therefore

lim z, = w.
n—oo

Now, ¢ (d(w,Tw)) < gzﬁ(sd(w, T ) + sd(T7 e, Tw))

< 5¢ (d(w, wn+1))+sp{¢ (d(zn, Zng1))+¢ (d(w, Tw)) } that is, (1-sp)¢ (d(w, Tw)) <

56 (d(w, 2031)) + 596 (A2, B 11))

— 0 as n — oo which implies d(w,Tw) = 0, establishing that w
is a fixed point of T'. The uniqueness of the fixed point is derived from
condition (2.5) and the monotonicity of ¢.
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Example 7. Consider the incomplete b-metric space (X, d), where X =
(0,00) and

dz,y) ={z+y, z#y0, z=y
DefineT : X — X by

1
Tx:{ 12, 0<z<2l, z=2, o>2

It can be easily seen that T is not continuous and X is T'-orbitally compact.
For ¢(x) = log(1 + z), we have condition (2.5) as

{1+ d(Tz,Ty)}?* < e{l+d(z,Tz)} {1 +d(y,Ty)}

For x,y > 2, we have

2

1
{1+ d(Tz, Ty)}? = {1 Fotob <y

< | =

e{1+d(x,Tx)}{1+d(y,Ty)}:e{1+x+%}{1+y+$} > 9.

For 0 <z <2 and y > 2, we have

1 1)2
{1+d(Ta:,Ty)}2:{1+§+§} < 4,

e {1+ d(z, Ta)} {1 + d(y, Ty)} :e{1+x+%}{1+y+$} > de.

For 0 <z <2 and y = 2, we have

2
{14 d(Tz,T2)}* = {1+%+1} = % <6,

e{l+d(x,T:c)}{1+d(2,T2)}ze{1+x+%}{1+2+1} > Ge.

For x > 2 and y = 2, we have

2
{14 d(Tz,T2)}* = {1 + i - 1} <6,

e {1+ d(z, T2)} {1+ d(2,T2)} :e{1+x+%}{1+2+1} > 12e.

Thus T satisfies condition (2.5) and therefore, by Theorem 2.10, T' has a
unique fixed point, r = % Also, for an arbitrary xog € X, it is easily seen
that T?xg = % so that the sequence of iterates {T™xzo} converge to the fixed

i -1
pomt x = 3.
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Asymptotic regularity of T

In the previous section, Theorem 2.7 does not hold for p > % Here, we
try to raise the bound of p by assuming 71" to be an asymptotically regular
mapping. For a metric space (X,d), a mapping 7' : X — X is called
asymptotically regular [7] if

lim d(T"z, T z) =0 forall ze€ X.

n—o0

For further details in asymptotic regular mappings we refer to [3, 8] and
the references therein.

Theorem 2.11. Let (X,d) be a complete b-metric space and T : X —
X be an asymptotically regular map satisfying (2.5) for some p with sp < 1.
Then T has a unique fixed point.

Proof. Let z € X and consider the sequence {x,} where x, = T"z, n €
N. For m > n, since T is asymptotically regular ¢ (d(T" 1z, T™Hz)) <

p{d’ (d(Tnx,Tn+1:E)) + ¢ (d(Tm,Tm+1)) }

— 0 as n — oo Thus
d(T" g, T ) — 0 as n — 0o

showing that the sequence {z,} is a Cauchy sequence. Since X is complete,
there exists z € X such that lim,, ., T"x = z.

Again, ¢ (d(z,Tz)) < (;S(sd(z, T ) + sd(T™ e, Tz))
< 5¢ (d(z, T" ) + s¢ (d(T" 1z, T2))
< s¢(d(z,T"x)) + Sp{¢ (d(T"z, T z)) + ¢ (d(2,Tz)) } That is,

(1= 5p)¢ (d(2,T2)) < 56 (d(=2,T")) + spo (AT, T"2))
Therefore, in the limiting case when n — oo, we have
(1 —-sp)p(d(z,Tz)) =0 d(z,Tz)=0.

Suppose that Tw = w with z # w. Then

6 (d(T2 Tw)) < p{cb(d(z,Tz)) + ¢<d<w,m>} —0,
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implying Tz = Tw. But then we have
w=Tw=Tz==z,
a contradiction.

Example 8.  Consider the complete b-metric space (X,d) where X =
[0, 1] and d is the usual metric on X. It can be easily seen that the function
T :X — X defined by Tx = § for all v € X is asymptotically regular.
Since s = 1, we can take p < 1. Then for ¢(t) =log(1 +t), condition (2.5)
reduces to

14+d(Tz,Ty) < 6{1 + d(z,T:z:)}{l + d(y,Ty)}

But we have, 1+d(Tx,Ty)=1+|5 — §| <1+[3[+|§| < {1+ [5[} {1+ [4]}
< e{l + d(a:,Tx)}{l + d(y,Ty)}. By the above theorem, there exists a
unique fixed point. Here, x = 0 is the unique fixed point.

If we consider the b-metric d(z,y) = |z — y|?, then s = 2 and p < 1.
Condition (2.5) in this case is

2
{1 + d(Ta:,Ty)} < e{l + d(a:,Tx)}{l + d(y,Ty)}
and is satisfied by T and we get the same result as before.

Theorem 2.12. Let (X,d) be a complete b-metric space and T : X —
X be an asymptotically regular map satisfying (2.1) for some p with sp < 1.
Then T has a unique fixed point.

Proof. Let z € X and consider the sequence {x,} where x,, = Tz, n €
N. For m > n, since T is asymptotically regular, we have (b(d(T”Hx, TmH:L‘)) <

p{¢ (d(T"e, T™2)) + & (d(T"z, T" )

+ ¢ (d(T™z, T™g)) }

< k‘p{d) (d(Tmz, T 2)) + ¢ (d(TTz, T 2)) }

P (d(T"“% Tm“:z:)), for some positive integer k, and so, ¢(d(Tn+1 -, Tm“x)) <

%{qﬁ (d(T"z, T"'z)) + ¢ (d(T™x, T™ 1)) }
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— 0 as n — oo, which shows that {T"xz} is a Cauchy sequence. Since
X is complete, there exists z € X such that

lim 7"z = z.
n—oo

Now, ¢(d(z,T=)) < ¢<sd(z,T”+1x) + sd(T”Hx,Tz))
< s¢ (d(z, T ) + sp{qb (d(T"x, 2)) + ¢ (d(T"z, T x))
+ ¢ (d(2,Tz)) } or, (1—sp)¢(d(z,Tz)> < sgb(d(z,T”“x))

+sp{ 6 (T2, 2) + 6 (T, T )
— 0 as n — oo . Hence d(z,Tz) = 0, that is, z is a fixed point of T'.

If possible, let w # z with Tw = w. Then ¢ (d(Tw,Tz)) < p{qﬁ (d(w, z))+

8 (dlw, Tw) + 6 (d(zT2) |
< ¢ (d(w, z)) which is a contradiction. Hence the result. As pointed

out by Gérnicki in [17], a mapping T : X — X satisfying

¢ (d(Tz, Ty)) < ¢ (d(z,Tx)) + ¢ (d(y, Ty))

for all z,y € X with x # y, and asymptotically regular may not have a
fixed point (one may refer to Example 3.2 of [17]).
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