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1. Introduction

A class of nonlinear problems with variable exponents is a new search field
which reflects a new type of physical phenomena. For a number of materials
with inhomogenies, modeling using classical Lebesgue and Sobolev spaces
has shown its limitation. For example, in the context of fluid mechanics,
much attention has been given to the study of electrorological fluids that
have the ability to change their mechanical properties when an electric
field is applied to them. Recently, Rajagopal and M. Ruzicka developed
in [15](see also [16]) a very interesting model for these fluids taking into
account the delicate interaction between the electric field F(x) and the
moving liquid. The energy associated with this kind of problems is given
by [q |VuP@)dz or rather by [,w(z)|Vul|P@dz. This type of energy also
appears in the problems of elasticity [22].

The natural energy space in which such problems can be studied is
the weighted variable exponent Sobolev space VVO1 P (x)(Q,w). For more
information about these spaces and their properties, we refer to articles
[1, 19, 20] and references therein.

Let © ¢ RY be an open bounded set with boundary 99 of class C*.
In this paper we study the existence of solutions of the following nonlinear
degenerated p(z) elliptic problem

(1.1) — div a(z, Vu) = f(z,u,Vu) in Q
’ u=0 on 0f).

where

p € C.(Q) := {measurable function h(-) : Q@ — R"/ 1 < h™ < h(z) < h" < +o0},

whith

h~ = essinf{h(z)/x € Q} and h" = esssup{h(z)/z € Q}.

We also assume that p satisfies the log-Holder continuity condition, i.e.

— 1
there is a constant C' > 0 such that for every z,y € Q, x # y with |z—y| < 3

one has

(1.2) Ip(z) — p(y)| < m;
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The operator Au = — div a(z, Vu) is a Leray-Lions operator defined on
Wol P (m)(Q,w), where w is a weight function, satisfying some integrability
conditions and f is Carathéodory functions satisfying some nonstandard
growth condition.

By studying the problem (1.1), we then extend both a class problems
that involve Leray-Lions operators with variable exponents (see [2]) and
another of degenerate problems that involve special weights [2, 7, 10].

In this paper, the method used to treat the problem (1.1) is the topo-
logical degree which is widely used in the study of nonlinear equations,
especially elliptic. Since the construction of the first topological degree
by Brouwer in 1912 for continuous maps in finite dimensional Euclidean
spaces [8], this theory has undergone several extensions and generaliza-
tions. Leray and Schauder generalized it in 1934 for compact operators in
Banach spaces of infinite dimension [14]. Later, the theory was built by
Berkovits and Mustonen [3, 4, 5, 6].

This paper is divided into three sections, organized as follows: in section
2, we introduce some basic properties of the space W1r() (Q,w) and an
outline of Berkovits degree theory. In section 3, we prove the existence of
solutions of (1.1).

2. Mathematical Preliminaries

2.1. Weighted variable Lebesgue and Sobolev spaces

In this subsection, we recall some definitions and fundamental properties
of weighted variable Lebesgue and Sobolev spaces (see [1, 19, 20] for more
details).

Let © an open bounded subset of RY (N > 1) and p(-) € C(Q) satis-
fying the log-Hdlder continuity condition (1.2).

Definition 2.1. A function w defined on €2 is called a weigh function if it
is measurable and strictly positive a.e. in €.

Let introduce the integrability conditions used on the framework of
these spaces

(2'1) w 6 L}OC(Q)7
(2'2) w* e L}OC(Q)7
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where w*(z) = w(z) 7' @) with (I) + ( j = 1. We define the weighted
variable exponent Lebesgue space as

LP@)(Q w) = {u : Q — R measurable, /Q u(z) PP w(z)de < oo}.
The space LP@®)(Q, w) endowed withe the norm :
fulloyao =06 {3 >0, [ | 4D ez < 1)
is a uniformly convex Banach space, and therefore reflexive. Let us denote
= /Q luP@w(z)de, Yue LPP(Qw).

Note that if w = 1, then LP@)(Q,w) = LP)(Q) and I, (u) = I,1(u) =
Pp(z) (the convex modular, see [11]).
LP'@)(Q, w*) is the conjugate space of LP(*)(Q, w).

By taking

_1_

(2’3) [p,w<u) = pp(x)(wp(')u) and ||w qu (z) — Hqu(JE )w>

we have, as in [11], the Holder inequality

' 1 1
p(x) V() * L o
vu € LP@(Q,w), v € L umwAéwmuxﬂ+mewmwm@@.

(2.4)
We have also the continuous embedding LP2(®)(Q, w) — LP1(®)(Q, w)
for all

p1,p2 € C+(Q) where p1(z) < po(z) ae. x € Q.

We can prove also, by the identifications id, as in [11], the following
important result

Proposition 2.2. for each u € LP®)(Q, w),

L [ullpz)w < 1 (resp. = 1 or > 1) < I u(u) <1 (resp. =1 or > 1),

w(w) < Jlull
(w) < Jlully

IIUIIp( <l= IIUIlp () < Ip

(z),w’

W m) w’
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3. Lpwlu) <l o+ [l e
4. el < o) + 1,

5. Hqu(z)ﬂU — 0% Ipw(u) —0 and Hqu(x),w — 00 & I y(u) — 0.
The weighted variable exponent Sobolev space is defined by
W@ (Q,w) = {u € LP@(Q) and |Vu| € LP®(Q,w)}.
equipped with the following norm

Hqu,p(a;),w = Hqu(a:) + Hqup(a:),w for all u € Wl,p(m)(97w)‘

We denote by Wol’p(x)(Q, w) the closure of C$°(Q) in WHP@)(Q, w) with
respect to the norm [|ul|; ()., We have the following compact embedding

Proposition 2.3. [13, Proposition 2.3.] W&’p(z)(Q,w) e LP(Q).

The dual space of Wol’p(‘)(Q,w), denoted W17 0)(Q, w*), is equipped
with the norm

N
Joll-1@y00 = 0 { el + 3 el

=1

where the infinimum is taken on all possible decompositions v = vg—div F.

Remark 2.4. [19, Theorem 7 and Corollary 2/The Poincaré inequality
holds for the weighted Sobolev spaces WOI P (')(Q,w). In particular, this

space has a norm || - [[ () given by

)1 p(e) = [Vl a0 for all u € WoPH (0, w),

which equivalent to || - [|1 p(z)w-
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2.2. An outline of Berkovits degree theory

Let X be a real separable reflexive Banach space with dual X* and with
continuous pairing (. , .), 2 be a nonempty subset of X and Y be a real
Banach space. The symbol — (—) stands for strong (weak) convergence.

In this subsection, we give an outline of the Berkovits degree we will use
to study the problem (1.1). We begin by defining the appropriate operator
classes that Berkovits used to build this degree. The reader can find the
definition of these classes in [3, 4, 5, 6].

We recall that a mapping F': Q C X — Y is

e bounded, if it takes any bounded set into a bounded set.
e demicontinuous, if for any (uy) C Q, u, — u implies F(u,) — F(u).

e compact if it is continuous and the image of any bounded set is rela-
tively compact.

A mapping F: Q C X — X* is said to be

e of class (S4), if for any (uy) C Q with u, — u and limsup(Fuy,, u, —
u) < 0, we have u,, — u.

e quasimonotone, if for any (u,) C Q with u,, — u, we have
limsup(Fup, u, —u) > 0.

For any operator F': 2 C X — X and any bounded operator T': )1 C
X — X* such that Q C 4, we say that F' is of class (S4)r, if for any
(up) C Q with u,, — w, yp, := Tu, — y and limsup(Fu,, yn, — y) < 0, we
have u,, — u.

Let O be the collection of all bounded open set in X. For any Q2 C X,
we consider the following classes of operators:

Fi(2) = {F:Q— X" | F is bounded, demicontinuous and of class (S;)},
Fre(Q) = {F:Q— X|F is bounded, demicontinuous and of class (S;)r},

Fr(Q) = {F:Q— X |F is demicontinuous and off class (Sy)r},

fB(X) = {FG,’FT,B(G') | GGO,TGfl(G)}.

Here, T € F1(G) is called an essential inner map to F.
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Definition 2.5. Let G be a bounded open subset of a real reflexive Banach

space X, T € Fi1(G) be continuous and let F,S € Fr(G). We define a
class Hr(G) (called a class of admissible affine homotopy with the common

continuous essential nner map T) as the class of affine homotopy H :
[0,1] x G — X defined by

H(t,u) := (1 —t)Fu+ tSu for (t,u) € [0,1] x G.

Remark 2.6. [4]
Hr(G) C (S4)r.

We introduce the topological degree for the class F5(X) due to Berkovits

[4].
Theorem 2.7. There exists a unique degree function
d:{(F,G,h)|G € O,TcFi(G),FcFrpG),h¢FOG)} —Z
that satisfies the following properties
1. (Existence) if d(F,G,h) # 0, then the equation
Fu=nh

has a solution in G.

2. (Additivity) Let F' € Frp(G). If Gi and Go are two disjoint open
subset of G such that h & F(G \ (G1 UGs)), then we have

d(F,G,h) = d(F,G1, h) + d(F,Ga, h).

3. (Homotopy invariance) If H € Hp(G) is bounded and h : [0,1] — X
is a continuous path in X such that h(t) ¢ H(t,0G) for all t € [0, 1],
then the value of d(H(t,.), G, h(t)) is constant for all t € [0,1].

4. (Normalization) For any h € G, we have
d(I,G,h) =1

where I denotes the identity operator.
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3. Main result

3.1. Basic assumptions and technical lemmas

Throughout the paper, we assume that the following assumptions hold. Let
Q be a bounded open set of RY (N > 1) and p(-) € C.(Q). And let w a
weight function in €2 which satisfies the integrability conditions (2.1) and
(2.2).

The function a : © x RY — RY is a Carathéodory function satisfying
the following conditions: For all ¢ € RY and for almost every z € Q,

(3.1) la(z, )] < BT (k(z) + w7 @ |¢PE)-1),
(3.2) la(z,€) — alz, )€ —1) >0 VE £,
(3.3) a(z, &) > aw(z)|¢[PH),

where k(z) is a positive function in LP'®)(Q) and « and f8 are a positive
constants.

Let f(x,5,€) : 2 x R x RY — R be a Carathéodory function such that
for a.e. z € Q and for all s € R, € € RV, the growth condition

(34)  1f(@,5,6)| < 7w (h(w) + wTE|s[19 4 w7l 1)

for a.e. x € Q and all (s,&) € R x RY, where 7 is a positive constant, h is
a positive function in L ®)(Q) and 1 < ¢~ < q(z) < ¢t <p~.

Lemma 3.1. [13] Let g € L"®)(Q, w) and g,, € L"*)(Q, w) with gnllr(z)0 <

W —

C for1 < r(z) < oo. If g,(x) — g(z) a.e on Q, then g, — g in L"®)(Q, w).
Let define the operator A : Wg’p(m)(Q,w) — WL @)(Q,w*) by

(3.5) Au = —diva(z, Vu)
then,
(Au,v) = / a(z, Vu)Vude,
Q
for all v in Wol’p(m) (Q,w).

Lemma 3.2. If the assumptions (3.1)-(3.3) holds, then A is bounded, con-
tinuous, coercive and of class (S4).
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Proof. Step 1:
Let’s show that the operator A is bounded.

By using the Holder’s inequality (2.4), we have for all u, v € Wol’p(x) (Q,w)

|(Au,v)| = ’/ x, Vu) VUd:E’

= ’/ P(I) Vv w( )
_1
< CHa(xv Vu)w(a:) p(z) Hp’(:)c)”vv w(x) rlz) Hp(:)c)

1
7o da|

Thanks to (2.1), (3.1) and Proposition 2.2 we can easily prove that
l|la(z, Vu)w(a:)ﬁ;) |p/(z) is bounded for all u € Wol’p(x)(Q, w). Therefore

[(Au,v)| < const||va(:n)ﬁ||p(m)

const||Vol| peaz) w

- con8t||7)||1,p(:c)1w’

which means that the operator A is bounded.
Step 2:

To show that A is continuous, let u, — u in Wol’p(m)(Q,w). Then
Vu, — Vu in LP@)(Q,w). Hence there exist a subsequence (ug) of (uy,)
and measurable function g in (LP(®)(€,w))Y such that

Vug(z) — Vu(z) and |Vug(z)| < g(z)

for a.e. x € Q and all kK € N. Since a satisfies the Carathodory condition,
we have

a(z, Vug(z)) — a(z, Vu(x)) a.e. x € S
and from (3.1), we get
lale, Vur())] < BT (k(z) + w7 |g(z)P@ )
for a.e. x € Q and for all £ € N. Since

[ 7 (b(a) 407 g(a) P D O @)da < € [ ()P O-+ulg(a) ) < ox.
Q Q
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(because k € L) (Q) and g € (LP®)(Q,w))Y), then
1 1 ’
z — Bwr® (k(x) + w7 ® |g(z)[P@ 1) e P @ (Q,w*),
and thanks to the equality
Ly w(a(z, Vug) —a(z, Vu)) = /Q la(z, Vug(z)) —a(z, Vu(a:))]pl(w)w* (z)dz,

the dominated convergence theorem and the equivalence (5) of Proposition
2.2 allow us to assert that

a(z, Vug) — a(z, Vu) in L @ (Q, w*).

Thus the entire sequence a(z, Vau,,) converges to a(z, Vu) in LP (*)(Q, w*).

Then, Vv € Wol’p(x) (Q,w); (Aup,v) — (Au,v), which implies that the

operator A is continuous.
Step 3

In this step, we show that A is coercive. For that Let v € Wol’p(x) (Q,w),
We have from (3.3), the Proposition 2.2 and Remark 2.4

< Av,v > c

HUHLP(I’)yw N HUHI,p(x)

alpw(Vv) > C'l[f 4w

for some r > 1. Therefore

< Av,v >
SN2 o as ol ey — oo
HUHl,p(x),w

So, A is coercive.
Step 4

It remains to show that the operator A is of class (Sy). Let (uy), be a
sequence in VVO1 P (I)(Q, w) such that

(3.6) lim sup (A, u, —u) < 0.

k—o0

{ Up, —~u in Wol’p(x)(ﬂ,w)

We will prove that

Up — u in Wol’p(x)(Q,w).
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Since u, — u in Wol’p(m) (Q,w), then (up)y is a bounded sequence in
VVO1 P (x)(Q, w). By using the Propositions 2.2 and 2.3, there exist a subse-
quence still denoted by (uy,), such that

Up — u in Wol’p(x)(Q,w),

Up — u in LP®)(Q) and a.e in Q.

From (3.2) and (3.6), we have

(3.7) lim (Auy, uy, — u) = lim (Au, — Au,up —u) = 0.

n—oo n—oo

Let D,, = a(z,Vu,).V(u, —u). By (3.7) D, — 0 in L}(Q) and for a
subsequence D,, — 0 a.e. in 2.
Since u, — w in Wol’p(x)(Q,w) and a.e in €, there exists a subset B of
2, of zero measure, such that for x € Q\ B, |u(x)| < oo, |Vu(z)| < oo,
k(x) < 00, up(z) — u(x), Dyp(z) — 0.

Defining &, = Vuy(z), £ = Vu(x), we have

Dn(x) = a(z,&n)-(§n — &)
= a(z,&n)én — a(z,&n)E ) )
> aw(@)[€n PP — fu(x) 7 (k(z) + w(z) @ €, [PO )]
> ) = Gy [14 €@,

where C,, is a constant which depends on z, but does not depend on n. Since

up(x) — u(x) we have |u,(z)| < M,, where M, is some positive con-
stant. Then by a standard argument |, | is bounded uniformly with respect
to n, we deduce that

Co G
).

[P [&nl

If |£,| — oo (for a subsequence), then D, (x) — oo which gives a contra-
diction. Let now £* be a cluster point of &,. We have |£*| < oo and by the
continuity of a we obtain

Dy (z) > ’fn’p(z) (0‘ -

alw, &).(€ — ) = 0.
In view of (3.2), we have £* = &, which implies that

Vup(z) = Vu(z) a.ein Q.
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Since the sequence a(x, Vuy,) is bounded in (L' ®)(Q,w*))N, and
a(x,Vu,) — a(z, Vu) a.e. in , then by Lemma 3.1 we get
a(z, Vu,) — a(z, Vu) in (LP@(Q,w*))N ae. in Q.
We set g, = a(z, Vuy)Vu, and § = a(z, Vu)Vu. We can write
Un— 7 in LYQ).

We have
a(z, V). Vi, > o w(z)|Vu, [P,

By Fatou’s

Q k=

Let 2, = w|Vu,|PO), 2z = w|Vul[PV), y, = I and y =
lemma,

/2yda:§liminf/y+yn—|zn—z|daj;
Q n—oo JO

ie., 0 < —limsup [ |2, — z|dz. Then
n—oo

0< liminf/ |z, — z|dx <limsup [ |z, — z|dx <0,
Q Q

n—0o0 n—00

this implies
Vup, — Vu  in (LP®(Q,w))V.

Hence u,, — u in I/VO1 P (m)(Q, w), which completes the proof.

Lemma 3.3. Let S : Wol’p(x)(Q,w) — WP @) (Q, w*) be the operator
setting by

(Su,v) = —/ f(z,u, Vu)vde, Yu,v € Wol’p(x)(Q,w).
Q
If the assumption (3.4) holds, then S is compact.

Proof. Let us define an operator ¢ : Wol’p(x) (Q,w) — LV @) (Q, w*) by
ou(x) := —f(z,u, Vu) for u € Wol’p(m)(Q,w) and = € Q.
We begin by showing that ¢ is bounded and continuous.

For each u € Wol’p(x)(Q, w), we have by the growth condition (3.4), the
inequalities (3) and (4) of Proposition 2.2 that
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[oully @)we < Ipw(du) +1
= Jo | (@ u(@), Vu(@)P @w*(2)dz + 1
< COTLSt(pp( )( )+ Irw( )+ Irw(vu))
< const(||]% ) + 10150 + [l 0 + Hull?(x)w
VUl + IVull; m),w) +1

where () = (¢(z)—1)p'(x) < p(z). By the continuous embedding LP(*) —s
L"@) and the Poincaré inequality, we have

+ —
lfullp @)+ < Const(llhllp 1A oy + 1l a0+ 1l ) + 1

p(I

Which means that that ¢ is bounded on W& (@) (Q,w).

To show that ¢ is continuous, let u,, — w in VVO1 P (m)(Q, w). Then u, — u
in LP®)(Q) and Vu, — Vu in (LP®(Q,w))N. We can thus extract from
(u,,) a subsequence (uy) and there exist measurable functions H in LP(*)(Q)
and G in (LP®)(Q,w))" such that

ug(x) — u(z) and Vug(x) — Vu(z),

|ur ()| < H(z) and [Vug(z)] < |G(2)|

for a.e. x € 2 and all kK € N. Since f satisfies the Carathodory condition,
we get,

f(x,uk(:n), VUk(iU)) - f(x,u(a:), VU(ZL‘)) a.e. T € Q.
From (3.4), it follows that
£ (2, ur(2), V(@) < ywi (h(z)+w7@ [H ()10 107 @ |G(z) 2@

for a.e. x € Q and for all £ € N.
Since

_1_ _1 _1 /
Wi (h(x) + w7 [ H(2)| "0 + w7 @ |G ()17 € 270, w),

and by the equality

Ly e (Qur—u) = /Q | (@, up (@), Vag(@) = f (2, u(@), Vu(@) " Dw*(@)dz,

we can conclude with the dominated convergence theorem and the equiva-
lence (5) of the Proposition 2.2 that

duy, — du in LP D (Q, w*).
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Thus, the entire sequence (¢u,) converges ¢u in LP (®)(€, w*). This means
that ¢ is continuous.

Since the embedding I : Wol’p(m)(Q,w) e LP@)(Q w) is compact,
its adjoint operator I* : L¥'(®) (Q,w*) — Wﬁl’p/(”)(Q,w*) is also compact.
Finally, the composition

S=1TI¢: Wol’p(x)(Q,w) — WP E(Q w*)
is compact.

Lemma 3.4. [4, Lemma 2.2 and 2.4] Let G be a bounded open set in a

real reflexive Banach space X. Suppose that T € F1(G) is continuous and

S : Dg C X* — X is demicontinuous such that T(G) C Dg. Then the
following statements hold:

e If S is quasimonotone, then I + SoT € Fr(G).
e If S is of class (Sy), then SoT € Fr(G).

3.2. Existence of weak solution
Let us first define the weak solution of problem (1.1).

Definition 3.5. A weak solution of the problem (1.1) is a measurable func-
tion
u € Wol’p(m) (Q,w) such that

/a(m,Vu)Vvdx:/ f(z,u, Vu)vdz
Q Q

for all v € Wg’p(m)(Q,w).
The main result of this paper is the following theorem.
Theorem 3.6. If the assumptions (3.1)-(3.4) holds, then the problem (1.1)

admits at least one weak solution.

Proof. Let Aand S : Wol’p(x)(ﬂ,w) — WP @)(Q,w*) be as in (3.5)
and Lemma 3.3 respectively. Then u € VVO1 P (x)(Q, w) is a weak solution of
(1.1) if and only if

(3.8) Au = —Su
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Since the operator A is strictly monotone (by assumbtion (3.2)), thanks
to the properties seen in Lemma 3.2 and in view of Minty-Browder Theorem
(see [21], Theorem 26A), the inverse operator T := A~! : W17 (@)(Q, w*) —
I/VO1 P (I)(Q,w) is bounded, continuous and of class (S;). Moreover, note
from Lemma 3.3 that the operator S is bounded, continuous and quasi-
monotone.

Therefore, equation (3.8) is equivalent to

(3.9) u="Tv and v+ SoTv = 0.

To solve equation (3.9), we will apply the theory of Berkovits degree
seen in Theorem 2.7 . For this, we will first show that the set

B:={ve W_l’pl(x)(Q,w*)\v + tSoTv = 0 for some t € [0, 1]}
is bounded.
Indeed, let v € B and set u := T, then HTle,p(a:),w = Hqup(z),w-

o If [|[Vu|p)w < 1, then ||T||1 20 is bounded.

e If [[Vu| pz)w > 1, then we have by the Proposition 2.2

(3.10) ||TU||}17;,(1),1U = ||VU”§&),1U < Ip,w(vu)‘
By the assumption (3.3), we have
a(z, Vu).Vu > aw(z)|Vul|P®),

Then

Lw(Vu) = /Q VPO w(x)de
1

< —/ a(z, Vu).Vu

@ JQ

1

1
= —(,T
— (v, Tv)

= _—t<SOT’L),TU>.
«
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This implies that

(3.11) I w(Vu) / f(z,u, Vu)udz.

We get, by the inequalities (3.10), (3.11) and the growth condition
(3.4), the estimate

T 0 < const( | 107 he)u(a) dot () | Va2 fufuw(@)da).
’ ’ Q Q

Since h € LP®)(Q), then wrOh e L@ (Q,w*). By the Holder
inequality, we have

1 1
/Q jwr® h(z)u(z)|de < 2(|wrO by @) wllwllp@)w = 207l @ 1wl o

By the Young inequality, we have

1
/ (Vu|1® " y|w(z)de = / |Vu|q<m)*1wm.|u]wﬁda:
Q Q

u| @) () da Luq(f’:)wav x
< [ SV s + [l )

1 1
= q,__Iq,w(vu) + q__Iq,w(U)

+ + -

We can then deduce

- +
1Tl 0y < const(ullpay + Nl L + Il iy o + V05 ).

q(z),w
By the Poincaré inequality, we have

Hqu(z),w < CHqup(x),w = CHTUHLp(x),w

From the continuous embedding LP(®)(Q, w) < L4®)(Q,w) and the
Poincaré inequality and, we have

+ + +
laly < CIValT) = CITONT 0
- - - +
||UHg(;C) w = CHVUHZ(&;)M = CHTUH({,q(m),w < CHTUH({,Q(;C) w
+ +
IIVUIIZ(I),w = IITUII?,Q(I) w
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We can then deduct the estimate
- +

It follows that {Tw|v € B} is bounded.

Since the operator S is bounded, it is obvious from (3.9) that the set
B is bounded in W17 (®)(Q, w*).

Consequently, there exists R > 0 such that
V]| =1 pt (2),0 < R for all v € B.
This says that
v+ tSoTv # 0 for all v € 9BR(0) and all ¢ € [0, 1].
From Lemma 3.4 it follows that
I+ SoT € Fr(Bg(0)) and I = AoT € Fr(Bg(0)).
Consider a homotopy H : [0,1] x Br(0) — W17 @)(Q, w*) given by

H(t,v) :== v+ tSoTw for (t,v) € [0,1] x Bg(0).

Applying the homotopy invariance and normalization property of the degree
d stated in Theorem 2.7, we get

d(I + SofT, Bp(0),0) = d(I, Bp(0),0) = 1,
and hence there exists a point v € Bgr(0) such that
v+ SoTv = 0.

Finally, we conclude that w = T'v is a weak solution of (1.1).
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