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1. Introduction

Let N, R, and C be the sets of all natural, real and complex numbers
respectively. We write

w={z=(zx): 2 € Ror C}

the space of all real or complex sequences. Let £, ¢ and ¢y denote the Ba-

nach spaces of bounded, convergent and null sequences respectively normed

by ||z||cc = sup|zk|. A subspace of w for example X,Y C w is called a se-
k

quence space. A sequence space X with linear topology is called a K-space
provided each of maps p; — C defined by p;(x) = x; is continuous for all
1€ N. A K-space X is called an FK-space provided X is a complete linear
metric space. FK-space whose topology is normable is called a BK-space.
Let X and Y be two sequence spaces and A = (a,) an infinite matrix of
real or complex numbers a,x, where n, k € N. Then we say that A defines a
matrix mapping from X to Y and we denote it by writing A : X — Y. If for
every sequence = = (x) € X the sequence Az = {(Ax),} the A-transform
of x is in Y, where

(1.1) (Az), = Zankmk, (n € N).
k

By (X,Y) we denote the class of matrices A such that A : X — Y.
Thus, A € (X,Y) if and only if series on the right side of (1.1) converges
for each n € N and every x € X.

The approach of constructing the new sequence spaces by means of
the matrix domain of a particular limitation method have been recently
employed by Basar and Altay [1], Malkowsky [16], Ng and Lee [20] and
Wang [33]. Sengonul [27] defined the sequence y = (y;) which is frequently
used as the ZP-transformation of the sequence x = (x;) i.e., (y;) = pz; +
(1 —p)xi—1 where x_1 = 0,p # 0,1 < p < oo and ZP denotes the matrix
ZP = (z;1,) defined by

D, (1=k)
zig=1q 1—p, (i—1=k);(i,keN)
0, otherwise.

Following Basar and Altay [1], Sengonul [27] introduced the Zweier se-
quence spaces Z and Zg as follows:
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Z={x=(xx): ZP(z) € ¢}
Zo={zx=(x): ZP(x) € ¢}

Kostyrko et al. [13] introduced the notion of I-convergence based on the
structure of admissible ideal I of subset of natural numbers N. Later on it
was studied by Salat [24], Salat et. al. [25, 26] and Demirci [2]. Recently it
was further studied by Tripathy and Hazarika [29, 30, 31], Mursaleen and
Mohiuddine [18], Jalal [6, 7], Khan et. al. [9, 10], Tripathy and Sen [32]
and several others.

Let X be a non-empty set. A set I C 2% (2% denoting the power set
of X ) is said to be an ideal if and only if I is additive i.e., A < B €
I = AUB € I and hereditary i.e., A € I, B C A= B € I. A non-
empty family of sets J(I) C 2% is said to be filter on X if and only if
o & J(I), for A,B € J(I) we have AN B € J(I) and for each A € J(I)
and A C B = B € J(I). An Ideal I C 2% is called non-trivial if I # 2X.
A non-trivial ideal I C 2% is called admissible if {{z} : 7 € X} C 1. A
non-trivial ideal I is maximal if there cannot exist any non-trivial ideal
J # I containing I as a subset. For each ideal I, there is a filter J(I)
corresponding to I i.e., J(I) ={K CN: K°®e I}, where K =N — K.

The idea of modulus function was structured by Nakano in 1953 [19].
A function f : [0,00) — [0, 00) is called a modulus function if
(i) f(t) =01if and only if ¢ =0,
(ii) f(t+u) < f(t) + f(u) for all t,u >0
(iii) f is non-decreasing, and
(iv) f is continuous from the right at zero.

Ruckle [21, 22, 23] used the idea of a modulus function f to construct
the sequence space

X(f) = {90: (zr) : > f(lml) < OO}-
k=1

This space is an FK-space, and Ruckle [21] proved that the intersection of
all such X (f) spaces is ¢, the space of all finite sequences. The space X (f)
is closely related to the space ¢; which is an X (f) space with f(z) = z for
all real > 0. Thus Ruckle [21, 22, 23] proved that, for any modulus f,
X(f) C ¢y and X(f)* C loo where
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X(f)* = {y = () : if(\ykxky) < oo}.
k=1

The space X (f) is a Banach space with respect to the norm [21]
oo
lzll = f(lzx]) < oo
k=1

Spaces of the type X (f) are a special case of the spaces structured by
Gramsch [5]. From the point of view of local convexity, spaces of the type
X (f) are quite pathological. Therefore symmetric sequence spaces, which
are locally convex have been frequently studied by Garling [3, 4], Kothe
[14] and Ruckle [21, 22, 23]. Later Kolk [11, 12] gave an extension of X (f)
by considering a sequence of modulus F' = (f;) and defined the sequence
space

X(F) = {iﬂ = (a1) = Y fr(lzxl) € X}-
k=1

The following well know inequality will be used throughout the article.
Let p = (px) be any sequence of positive real numbers with 0 < p; <

s%ppk =H, D= max{l,QHfl} then

(1.2) |ag, + bg [ < D (lag[”* + [bg]™*)

for all k € N and ag, b, € C. Also |ag|"* < max{l, \a]G} for all a € C.

2. Definitions and Preliminaries

Definition 2.1. A sequence space E is said to be solid or normal if (xy,) €
E implies (agxy) € E for all sequence of scalars (o) with |ay| < 1 for all
ke N.

Definition 2.2. A sequence space E is said to be monotone if it contains
the canonical pre images of all its step spaces.

Definition 2.3. A sequence space FE is said to be convergence free if (yy,) €
E whenever (zy) € E and x; = 0 implies y = 0.

Definition 2.4. A sequence space I is said to be a sequence algebra if
(zxyr) € E whenever (zy), (yx) € E.
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Definition 2.5. A sequence space E is said to be symmetric if (v4)) € E
whenever (zy) € E, where (k) is a permutation on N.

Definition 2.6. Let K = {k; < ky < ---} C N and let E be a sequence
space. A K—step of E is a sequence space \&- = {(zy,) € w: (x,) € E}.

Definition 2.7. A canonical pre-image of a sequence (xy,) € A% is a se-
quence (y,) € w defined by

)z, ifneK
(yn)_{ 0 , otherwise.

Definition 2.8. A canonical pre-image of a step space A% is a set of canon-
ical pre-images of all the elements in A\Y i.e., y is the canonical pre-image
/\’IE( if and only if is the canonical pre-image of some x € )\%}.

Definition 2.9. A sequence (x}) € w is said to be I-convergent to a num-
ber L if for every € > 0,{k € N : |z, — L| > €} € I. In this case we write
I —limzy, = L. The space ¢! of all I-convergent sequences to L is given by

' ={(z1) ew:{keN:|x,—L|>e} eI, for some L € C}.

Definition 2.10. A sequence (zy) € w is said to be I-null if L = 0 In this
case we write I — limz, = 0.

Definition 2.11. A sequence (xy) € w is said to be I-Cauchy if for every
e > 0 there exists a number m = m(e) such that {k € N : |x — x| > €} €
I

Definition 2.12. A sequence (x) € w is said to be I-bounded if there
exists M > 0 such that {k € N : |zx| > M} € I.

Definition 2.13. A modulus function f is said to satisfy Ao -condition if
for all values of u there exists a constantK > 0 such that f(Lu) < KLf(u)
for all values of L > 1.

Definition 2.14. Take for I the class I of all finite subsets of N then I
is a non-trivial admissible ideal and Iy convergence coincides with the usual
convergence with respect to the metric in X [13].

Definition 2.15. For I = I5 and A C N with §(A) = 0 respectively. Is
is a non-trivial admissible ideal, Is5-convergence is said to be logarithmic
statistical convergence [13].
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The following Lemma will be used for establishing some results of this
article.

Lemma 2.16. Let E be a sequence space. If I is solid then E is monotone
([8], Page 53).

Throughout the paper Z! ,Zé,Zgo, mIZ and m[ZO represent the Zweier I-
convergent, Zweier I-null, Zweier bounded, Zweier bounded I-convergent

and Zweier bounded I-null sequence spaces, respectively .

3. New Zweier multiplier sequence spaces

Let A = (\;) be an increasing sequence of positive real numbers tending to

oo such that A, < A.11, A1 = 1. The generalized de la Vallee Poussin mean
1

is defined by t,(z) = x Z x, where J, = [r— A+ 1,7 forr=1,2,3,---.

" ked,
A sequence r = (xf) is said to be (V,\)— summable to a number L if

tr(x) — L as r — oo [15]. If A\, = r then (V,\) summablility is reduced to
Cesdro summability. We denote by A the set of all increasing sequences of
positive real numbers tending to co such that A, < A, +1, A1 = 1.

Let F' = (fx) be a sequence of modulus functions, v = (vj) be a sequence
of strictly positive real numbers and p = (pg) be a bounded sequence of
positive real numbers.

In this paper we introduce the following classes of multiplier sequence
spaces.

[ZMNF,p,v)) =<z €w:{reN: % Yokes, Julloe(Zx)p — LI”* > €, for some L € C} € I} ,
Z)(F,p,v)] = reN: = Sy, Selon(Zapll" = e} e 1},
[Z)(F,p,v)]" = {x cw:IK>0 {r EN: LY es fillon(Za)e| > K} i 1}.

Also

T EW:

[my(F.p,v)]" = [Z(F.p, o)) N [Z%(F,p.v)]!

and

(my, (F,p,v)]" = [Z3(F,p,v)]" N[Z3(F,p,v)]".

For further properties of multiplier sequence spaces see [17, 28, 31]
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Theorem 3.1. Let F' = (fi.) be a sequence of modulus functions, v = (v),
be a sequence of strictly positive real numbers and p = (px) be a bounded se-
quence of positive real numbers, then the classes of sequences [Z*(F, p,v)]’,
[Z)(F,p,v)]! and [Z),(F,p,v)]! are linear spaces over the complex field C.

Proof. We shall prove the theorem for the space [Z*(F,p,v)]!. Let
z = (z) and y = (yx) be two elements in [Z*(F,p,v)] and let a, 8 be two
scalars in R. Then

{a:Ew: {7’€N:>\i Z fr[lve(Zx) — L1|]P* Ze} EI} for some L1 € C

" ked,

and

1
{yEw: {TEN:)\— Z T llve(Zy)k — Lq|]P* 26} EI} , for some Ly € C

T ked,

Let

" ked,

Ay = {a:Ew: {7’€N:>\i > felloe(Za)g — L[] Z%} GI}

and

Agz{y€w1{T€N:)\i Zfk”vk(Zy)k_[QHkag}EI}

T ked,

Since F' = (fx) is a sequence of modulus functions, from inequality
(1.2), we have

L

= 2 fullleve(Za) + Bor(Zy)k) — (aln + BLo) |

T ked,

< DTH)L S fillon(Ze) — L+ DT~ S filjon(Zy)i — L[
Ar ked, Ar ked,
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where T, and T} are positive integers such that |a| < T, and |3| < Ts. On
the other hand from the above inequality we get

{zew: {reN: L5, filllovi(Za) + Bur(Zy)) — (aLy + BLa)|IP* = ¢} |
C {a: Ew: {r eN: D(Tf)/\% ket Jel[|lvw(Za)y — Lq|]P*F > 6}}

U {y Ew: {7“ € N: D(T4") 3= Yk, fr llon(Zy)k — La|}* > 6}} :
The last two sets on the right hand side belongs to I and this completes
the proof. O

Theorem 3.2. Let (fx) and (gr) be sequences of modulus functions for
some fixed k and satisfy the As-condition. If X is any of the spaces
[Z)‘(F,p,v)]l ) [Zé‘(F,p, U)]I and [Z&(F,p,v)]l, then

(i) X(gr) € X (fx 0 gr)

()X (fr) N X (g) € X(fr + gn)-

Proof. (i) Let z = (z3) € [Z*(G,p,v)]!. Then, we have

(3.1) {yGw:{rEN:%ng[]vk(Zm)k—LHp’“zﬁ}EI}.

" ke,

Let € > 0 and hence choose 0 < ¢ < 1 such that fi(t) <efor 0 <t <4.
We write yx, = gk [|vk(Z2)r — L|] and consider

)\i > Unlye)Pr = )\i S Uyl + )\i S Unlyr)l™

" ke, " kedy ,yp<d T ke, yp>6

(3.2)

Since F' = (fy) is continuous, we have

33) > @ <A@+ D (™G = SUp P

keJr,yp<6 keJr,yr<6
For second summation (i.e yx > ¢§), we have

Yk Yk
<= <1+ ==
Yk 5 + 5
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Since F' = (fx) is non-decreasing, it follows that

Ji(ye) < fr (1 + %) < %fk(z) + %fk (2%’“) .

Again, since F' = (fi) satisfies Ap—condition, we can write

fulo) < 5K (%) 2+ 3K (%) 5 = K (%) 52

Hence, we have

G4 Y Uiwrs <ma{L (1 0@) "+ L X elm

keJr,yp>0 T ke,

From equations (3.1), (3.2), (3.3), (3.4), it follows that

{wa: {reN:)\i Zgk(fk[]vk(Zx)k—LHp’“)Ze} EI}.

" ke,

Hence X (gx) € X (fx o gk)-
(ii) Let = = (z3) € [ZM(F,p,v)]! N [ZG, p,v)]!. Then we have

" ke,

{:UGQJ:{TGN:)\i kaHUk(Zx)k—LHp’“ze} GI}

and

{JTGL«):{TGN:% ngﬂvk(Zx)k—LHkae}EI}

" ke,

The rest of the proof follows from the following relation;

{r e N: Sy, i+ an] low(Ze)i — LI > €]
C{reN: LSy fillow(Za), — LI > e} U O
{aj cw:reN: /\% Sokes. 9k [|vw(Zx)p — LIJP* > e}

99
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Corollary 3.3. X C X(F), for X = [Z(p,0)]L.IZ}(p,v)]!, [miy(p, o))’

and [m%o (p,v)].

Theorem 3.4. The spaces [Zy(F,p,v)]! and [m%o (F,p,v)]! are solid and
monotone.

Proof.  We shall prove the result for the space [Zj(F,p,v)]!, the result
f(})lr [m%O(F,p,v)][ can be proved similarly. Let x = (x3) € [Z)(F,p,v)),
then

(3.5) reN:— Y fillon(Zapl > ebeT
Ar ke,

Let aj, be a sequence of scalars with |ax| < 1 for all k£ € N, then the
result follows from (3.5) and the following inequality

fr llowvr(Zo) i |PF < lag] fr [Jon(Z2)r]PF < fr [low(Z2)g )"

The space [Z)(F,p,v)]! is monotone follows from Lemma 2.16. O

Theorem 3.5. The spaces [Z*(F, p,v)]! and [my (F,p,v)]! are neither solid
nor monotone in general.

Proof. The proof of this result follows from the following example.
Let I = Iy, fy(xz) = =, for x € [0,00),p = (px) = 1 and v = (v) = 1.
Consider the K —step space T}, of T' defined as follows:
Let (zx) € T} and (yx) € T be such that
) oz ¢ if ks odd;
Y=Y 0 : otherwise.

Consider the sequence (z;) defined as z = 1 for all k € N, then
(1) € [ZMNF,p,v)]’ but its K—step space preimage does not belong to
[ZMNF,p,v)]!. Thus [Z*(F,p,v)]’ is not monotone. Hence [Z*(F,p,v)]! is
not solid by Lemma 2.16. O

Theorem 3.6. The spaces [Z(F,p,v)]! and [Z}(F,p,v)]’ are sequence
algebras.
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Proof.  We prove that [Z)(F, p,v)]! is sequence algebra. For [Z*(F,p,v)]!
the result can be proved similarly. Let = = (z),y = (y) € [Z)(F, p,v)] .
Then

{r € N: )\i Z T lJve(Z2)g|]P* > 6} el

" ked,

and

{r EN: Ai A e} el

T ked,
Therefore

" ked,

{7’ EN: Ai S fi [fon(Za)k(Zy)il > e} er

Thus (zyx) € [Z3(F,p,v)]!. Hence [Z3(F,p,v)]! is a sequence algebra.
|

Theorem 3.7. Let F' = (fi) be a sequence of modulus functions. Then
[Z3(F.p.v))" € [ZMF.p, )] C [Z5(F.p,v))!

and the inclusions are proper.

Proof. Let z = (23) € [Z*(F,p,v)]’. Then there exists L € C such that

{r EN: 1 3 fillow(Zah — LI > e} el

" ked,
We have

fillon(Za)i — DIP < 3 i lloe(Za — LI + 2 e IEP*

Taking the supremum over k on both sides we get = = () € [Z2,(F,p,v)] .
The inclusion [Z)(F,p,v)]! C [Z*(F,p,v)]! is obvious. The inclusion is
proper follows from the following example.

Let I = I, fy(z) = 22, for x € [0,00), v = (v) = 1, p = (px) = 1 for
all k € N.

(i) Consider the sequence (xj) defined by xp = 1 for all & € N. Then
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(zx) € [ZA(F,p,v)]" but (zx) & [Z3(F,p,v)]".
(ii) Consider the sequence (yi) defined as

] 2, ifkis even;
Y=V 0 , otherwise.

Then (yx) € [Z3,(F,p,v)) but (yx) & [ZM(F,p,v)]!. O

Theorem 3.8. The spaces [Z*(F,p,v)|! and [Z}(F,p,v)]! are not conver-
gence free in general.

Proof. The proof of this theorem follows from the following example.
Let I = Iy, fy(z) = 22, for x € [0,00), v = (v) =1, p = (px) = 1 for all
ke N.

Consider the sequence (zj) and (yi) defined by = = k:_12 and y;, = k? for
all k € N. Then (z1) € [ZMNF, p,v))! and [Z)(F,p,v)]!, but (yx) does not
belong to both [Z*(F,p,v)]! and [Z)(F,p,v)] .

Hence the spaces are not convergence free in general. O

Thg;)rem 3.9. The spaces [miy(F,p,v)]! and [m%O(F,p,v)]I are not sep-
arable.

Proof.  We shall prove the result for the space [m%(F .p,v)]L. Let A be
an infinite subset of IN of increasing natural numbers such that A € I. Let

)1, ifke A
PE=19 9 , otherwise

and v = (vg) = 1 for all k € N. Let

_ _J =1, neA;
Po—(xn)_{ xp, =0 , otherwise.

Since A is infinite, so Py is uncountable. Consider the class of open
balls

1
B, = {B (z, 5) 1z € Po}. Let Cy be an open cover of [m%(F,p,v)]I and

[m)z‘o (F,p,v)]! containing B;. Since B is uncountable, so is C; can not be
reduced to a countable subcover for [m,(F, p,v)]’ as well as [m%o (F,p,v)]’.
Thus [m,(F, p,v)]’ and [m%o (F,p,v)]! are not separable. O
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