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1. Introduction

Let N, R , and C be the sets of all natural, real and complex numbers
respectively. We write

ω = {x = (xk) : xk ∈ R or C}

the space of all real or complex sequences. Let ∞, c and c0 denote the Ba-
nach spaces of bounded, convergent and null sequences respectively normed
by kxk∞ = sup

k
|xk|. A subspace of ω for example X,Y ⊂ ω is called a se-

quence space. A sequence space X with linear topology is called a K-space
provided each of maps pi → C defined by pi(x) = xi is continuous for all
i ∈ N. A K-space X is called an FK-space provided X is a complete linear
metric space. FK-space whose topology is normable is called a BK-space.
Let X and Y be two sequence spaces and A = (ank) an infinite matrix of
real or complex numbers ank, where n, k ∈ N. Then we say that A defines a
matrix mapping fromX to Y and we denote it by writing A : X → Y . If for
every sequence x = (xk) ∈ X the sequence Ax = {(Ax)n} the A-transform
of x is in Y , where

(Ax)n =
X
k

ankxk, (n ∈ N).(1.1)

By (X,Y ) we denote the class of matrices A such that A : X → Y .
Thus, A ∈ (X,Y ) if and only if series on the right side of (1.1) converges
for each n ∈ N and every x ∈ X.

The approach of constructing the new sequence spaces by means of
the matrix domain of a particular limitation method have been recently
employed by Basar and Altay [1], Malkowsky [16], Ng and Lee [20] and
Wang [33]. Sengonul [27] defined the sequence y = (yi) which is frequently
used as the Zp-transformation of the sequence x = (xi) i.e., (yi) = pxi +
(1 − p)xi−1 where x−1 = 0, p 6= 0, 1 < p < ∞ and Zp denotes the matrix
Zp = (zik) defined by

zik =

⎧⎪⎨⎪⎩
p, (i = k)
1− p, (i− 1 = k); (i, k ∈ N)
0, otherwise.

Following Basar and Altay [1], Sengonul [27] introduced the Zweier se-
quence spaces Z and Z0 as follows:
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Z = {x = (xk) : Zp(x) ∈ c}
Z0 = {x = (xk) : Zp(x) ∈ c0}

Kostyrko et al. [13] introduced the notion of I-convergence based on the
structure of admissible ideal I of subset of natural numbers N. Later on it
was studied by S̆alat [24], S̆alat et. al. [25, 26] and Demirci [2]. Recently it
was further studied by Tripathy and Hazarika [29, 30, 31], Mursaleen and
Mohiuddine [18], Jalal [6, 7], Khan et. al. [9, 10], Tripathy and Sen [32]
and several others.

Let X be a non-empty set. A set I ⊆ 2X (2X denoting the power set
of X ) is said to be an ideal if and only if I is additive i.e., A < B ∈
I ⇒ A ∪ B ∈ I and hereditary i.e., A ∈ I,B ⊆ A ⇒ B ∈ I. A non-
empty family of sets J(I) ⊆ 2X is said to be filter on X if and only if
φ 6∈ J(I) , for A,B ∈ J(I) we have A ∩ B ∈ J(I) and for each A ∈ J(I)
and A ⊆ B ⇒ B ∈ J(I). An Ideal I ⊆ 2X is called non-trivial if I 6= 2X .
A non-trivial ideal I ⊆ 2X is called admissible if {{x} : x ∈ X} ⊆ I. A
non-trivial ideal I is maximal if there cannot exist any non-trivial ideal
J 6= I containing I as a subset. For each ideal I, there is a filter J(I)
corresponding to I i.e., J(I) = {K ⊆ N : Kc ∈ I}, where Kc = N−K.

The idea of modulus function was structured by Nakano in 1953 [19].
A function f : [0,∞)→ [0,∞) is called a modulus function if
(i) f(t) = 0 if and only if t = 0,
(ii) f(t+ u) ≤ f(t) + f(u) for all t, u ≥ 0
(iii) f is non-decreasing, and
(iv) f is continuous from the right at zero.

Ruckle [21, 22, 23] used the idea of a modulus function f to construct
the sequence space

X(f) =

(
x = (xk) :

∞X
k=1

f(|xk|) <∞
)
.

This space is an FK-space, and Ruckle [21] proved that the intersection of
all such X(f) spaces is φ, the space of all finite sequences. The space X(f)
is closely related to the space 1 which is an X(f) space with f(x) = x for
all real x ≥ 0. Thus Ruckle [21, 22, 23] proved that, for any modulus f ,
X(f) ⊂ 1 and X(f)α ⊂ ∞ where
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X(f)α =

(
y = (yk) :

∞X
k=1

f(|ykxk|) <∞
)
.

The space X(f) is a Banach space with respect to the norm [21]

kxk =
∞X
k=1

f(|xk|) <∞.

Spaces of the type X(f) are a special case of the spaces structured by
Gramsch [5]. From the point of view of local convexity, spaces of the type
X(f) are quite pathological. Therefore symmetric sequence spaces, which
are locally convex have been frequently studied by Garling [3, 4], Kothe
[14] and Ruckle [21, 22, 23]. Later Kolk [11, 12] gave an extension of X(f)
by considering a sequence of modulus F = (fk) and defined the sequence
space

X(F ) =

(
x = (xk) :

∞X
k=1

fk(|xk|) ∈ X

)
.

The following well know inequality will be used throughout the article.
Let p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤
sup
k

pk = H, D = max
n
1, 2H−1

o
then

|ak + bk|pk ≤ D (|ak|pk + |bk|pk)(1.2)

for all k ∈N and ak, bk ∈ C. Also |ak|pk ≤ max
n
1, |a|G

o
for all a ∈ C.

2. Definitions and Preliminaries

Definition 2.1. A sequence space E is said to be solid or normal if (xk) ∈
E implies (αkxk) ∈ E for all sequence of scalars (αk) with |αk| ≤ 1 for all
k ∈ N.

Definition 2.2. A sequence space E is said to be monotone if it contains
the canonical pre images of all its step spaces.

Definition 2.3. A sequence space E is said to be convergence free if (yk) ∈
E whenever (xk) ∈ E and xk = 0 implies yk = 0.

Definition 2.4. A sequence space E is said to be a sequence algebra if
(xkyk) ∈ E whenever (xk), (yk) ∈ E.
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Definition 2.5. A sequence space E is said to be symmetric if (xπ(k)) ∈ E
whenever (xk) ∈ E, where π(k) is a permutation on N.

Definition 2.6. Let K = {k1 < k2 < · · ·} ⊂ N and let E be a sequence
space. A K−step of E is a sequence space λEK = {(xkn) ∈ ω : (xn) ∈ E}.

Definition 2.7. A canonical pre-image of a sequence (xkn) ∈ λEK is a se-
quence (yn) ∈ ω defined by

(yn) =

(
xn , if n ∈ K
0 , otherwise.

Definition 2.8. A canonical pre-image of a step space λEK is a set of canon-
ical pre-images of all the elements in λEK i.e., y is the canonical pre-image
λEK if and only if is the canonical pre-image of some x ∈ λEK .

Definition 2.9. A sequence (xk) ∈ w is said to be I-convergent to a num-
ber L if for every > 0, {k ∈ N : |xk − L| ≥ } ∈ I. In this case we write
I − limxk = L. The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ w : {k ∈ N : |xk − L| ≥ } ∈ I, for some L ∈ C} .

Definition 2.10. A sequence (xk) ∈ w is said to be I-null if L = 0 In this
case we write I − limxk = 0.

Definition 2.11. A sequence (xk) ∈ w is said to be I-Cauchy if for every
> 0 there exists a number m = m( ) such that {k ∈ N : |xk − xm| ≥ } ∈

I.

Definition 2.12. A sequence (xk) ∈ w is said to be I-bounded if there
exists M > 0 such that {k ∈ N : |xk| ≥M} ∈ I.

Definition 2.13. A modulus function f is said to satisfy ∆2 -condition if
for all values of u there exists a constantK > 0 such that f(Lu) ≤ KLf(u)
for all values of L > 1.

Definition 2.14. Take for I the class If of all finite subsets of N then If
is a non-trivial admissible ideal and If convergence coincides with the usual
convergence with respect to the metric in X [13].

Definition 2.15. For I = Iδ and A ⊂ N with δ(A) = 0 respectively. Iδ
is a non-trivial admissible ideal, Iδ-convergence is said to be logarithmic
statistical convergence [13].
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The following Lemma will be used for establishing some results of this
article.

Lemma 2.16. Let E be a sequence space. If E is solid then E is monotone
([8], Page 53).

Throughout the paper ZI ,ZI0,Z
I
∞, m

I
Z and mI

Z0
represent the Zweier I-

convergent, Zweier I-null, Zweier bounded, Zweier bounded I-convergent
and Zweier bounded I-null sequence spaces, respectively .

3. New Zweier multiplier sequence spaces

Let λ = (λr) be an increasing sequence of positive real numbers tending to
∞ such that λr ≤ λr+1, λ1 = 1. The generalized de la Vallee Poussin mean

is defined by tr(x) =
1

λr

X
k∈Jr

xk where Jr = [r−λr+1, r] for r = 1, 2, 3, · · ·.

A sequence x = (xk) is said to be (V, λ)− summable to a number L if
tr(x)→ L as r →∞ [15]. If λr = r then (V, λ) summablility is reduced to
Cesáro summability. We denote by ∧ the set of all increasing sequences of
positive real numbers tending to ∞ such that λr ≤ λr + 1, λ1 = 1.

Let F = (fk) be a sequence of modulus functions, v = (vk) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of
positive real numbers.

In this paper we introduce the following classes of multiplier sequence
spaces.

[Zλ(F, p, v)]I =
n
x ∈ ω :

n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k − L|]pk ≥ , for some L ∈ C

o
∈ I
o
,

[Zλ0 (F, p, v)]
I
=
n
x ∈ ω :

n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k|]

pk ≥
o
∈ I
o
,

[Zλ∞(F, p, v)]
I
=
n
x ∈ ω : ∃ K > 0

n
r ∈ N : 1

λr

P
k∈Jr fk [|vk(Zx)k|]

pk ≥ K
o
∈ I
o
.

Also

[mλ
Z(F, p, v)]

I = [Zλ(F, p, v)]I ∩ [Zλ∞(F, p, v)]I

and

[mλ
Z0(F, p, v)]

I = [Zλ0(F, p, v)]
I ∩ [Zλ∞(F, p, v)]I .

For further properties of multiplier sequence spaces see [17, 28, 31]
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Theorem 3.1. Let F = (fk) be a sequence of modulus functions, v = (vk),
be a sequence of strictly positive real numbers and p = (pk) be a bounded se-
quence of positive real numbers, then the classes of sequences [Zλ(F, p, v)]I ,
[Zλ0(F, p, v)]

I and [Zλ∞(F, p, v)]
I are linear spaces over the complex field C.

Proof. We shall prove the theorem for the space [Zλ(F, p, v)]I . Let
x = (xk) and y = (yk) be two elements in [Z

λ(F, p, v)]I and let α, β be two
scalars in R. Then

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk ≥

⎫⎬⎭ ∈ I

⎫⎬⎭ for some L1 ∈ C

and

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zy)k − L1|]pk ≥

⎫⎬⎭ ∈ I

⎫⎬⎭ , for some L2 ∈ C

Let

A1 =

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk ≥
2

⎫⎬⎭ ∈ I

⎫⎬⎭
and

A2 =

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zy)k − L2|]pk ≥
2

⎫⎬⎭ ∈ I

⎫⎬⎭
Since F = (fk) is a sequence of modulus functions, from inequality

(1.2), we have

1

λr

X
k∈Jr

fk [|(αvk(Zx)k + βvk(Zy)k)− (αL1 + βL2)|]pk

≤ D(TH
α )

1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk+D(TH
β )

1

λr

X
k∈Jr

fk [|vk(Zy)k − L2|]pk
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where Tα and Tβ are positive integers such that |α| ≤ Tα and |β| ≤ Tβ. On
the other hand from the above inequality we getn
x ∈ ω :

n
r ∈ N : 1

λr

P
k∈Jr fk [|(αvk(Zx)k + βvk(Zy)k)− (αL1 + βL2)|]pk ≥

oo
⊆
n
x ∈ ω :

n
r ∈ N : D(TH

α )
1
λr

P
k∈Jr fk [|vk(Zx)k − L1|]pk ≥

oo
Sn

y ∈ ω :
n
r ∈N : D(TH

β )
1
λr

P
k∈Jr fk [|vk(Zy)k − L2|]pk ≥

oo
.

The last two sets on the right hand side belongs to I and this completes
the proof. 2

Theorem 3.2. Let (fk) and (gk) be sequences of modulus functions for
some fixed k and satisfy the ∆2-condition. If X is any of the spaces
[Zλ(F, p, v)]I , [Zλ0(F, p, v)]

I and [Zλ∞(F, p, v)]
I , then

(i) X(gk) ⊆ X(fk ◦ gk)
(ii)X(fk) ∩X(gk) ⊆ X(fk + gk).

Proof. (i) Let x = (xk) ∈ [Zλ(G, p, v)]I . Then, we have

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

gk [|vk(Zx)k − L|]pk ≥

⎫⎬⎭ ∈ I

⎫⎬⎭ .(3.1)

Let > 0 and hence choose 0 < δ < 1 such that fk(t) ≤ for 0 ≤ t ≤ δ.
We write yk = gk [|vk(Zx)k − L|] and consider

1

λr

X
k∈Jr

[fk(yk)]
pk =

1

λr

X
k∈Jr , yk≤δ

[fk(yk)]
pk +

1

λr

X
k∈Jr , yk>δ

[fk(yk)]
pk

(3.2)

Since F = (fk) is continuous, we have

X
k∈Jr,yk≤δ

[fk(yk)]
pk ≤ [fk(2)]G +

X
k∈Jr,yk≤δ

[(yk)]
pk , G = sup

k
pk.(3.3)

For second summation (i.e yk > δ), we have

yk <
yk
δ

< 1 +
yk
δ
.
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Since F = (fk) is non-decreasing, it follows that

fk(yk) < fk

µ
1 +

yk
δ

¶
≤ 1
2
fk(2) +

1

2
fk

µ
2
yk
δ

¶
.

Again, since F = (fk) satisfies ∆2−condition, we can write

fk(yk) <
1

2
K

µ
yk
δ

¶
fk(2) +

1

2
K

µ
yk
δ

¶
fk(2) = K

µ
yk
δ

¶
fk(2)

Hence, we have

X
k∈Jr,yk>δ

[fk(yk)]
pk ≤ max

½
1,
³
kδ−1fk(2)

´H¾
+
1

λr

X
k∈Jr

[fk(yk)]
pk .(3.4)

From equations (3.1), (3.2), (3.3), (3.4), it follows that

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

gk (fk [|vk(Zx)k − L|]pk) ≥

⎫⎬⎭ ∈ I

⎫⎬⎭ .

Hence X(gk) ⊆ X(fk ◦ gk).
(ii) Let x = (xk) ∈ [Zλ(F, p, v)]I ∩ [Zλ(G, p, v)]I . Then we have⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L|]pk ≥

⎫⎬⎭ ∈ I

⎫⎬⎭
and ⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

gk [|vk(Zx)k − L|]pk ≥

⎫⎬⎭ ∈ I

⎫⎬⎭
The rest of the proof follows from the following relation;

n
r ∈N : 1

λr

P
k∈Jr [fk + gk] [|vk(Zx)k − L|]pk ≥

o
⊆
n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k − L|]pk ≥

oSn
x ∈ ω : r ∈ N : 1

λr

P
k∈Jr gk [|vk(Zx)k − L|]pk ≥

o 2
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Corollary 3.3. X ⊆ X(F ), for X = [Zλ(p, v)]I ,[Zλ0(p, v)]
I , [mλ

Z(p, v)]
I

and [mλ
Z0
(p, v)]I .

Theorem 3.4. The spaces [Zλ0(F, p, v)]
I and [mλ

Z0
(F, p, v)]I are solid and

monotone.

Proof. We shall prove the result for the space [Zλ0(F, p, v)]
I , the result

for [mλ
Z0
(F, p, v)]I can be proved similarly. Let x = (xk) ∈ [Zλ0(F, p, v)]I ,

then ⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k|]pk ≥

⎫⎬⎭ ∈ I(3.5)

Let αk be a sequence of scalars with |αk| ≤ 1 for all k ∈ N, then the
result follows from (3.5) and the following inequality

fk [|αkvk(Zx)k|]pk ≤ |αk|fk [|vk(Zx)k|]pk ≤ fk [|vk(Zx)k|]pk .

The space [Zλ0(F, p, v)]
I is monotone follows from Lemma 2.16. 2

Theorem 3.5. The spaces [Zλ(F, p, v)]I and [mλ
Z(F, p, v)]

I are neither solid
nor monotone in general.

Proof. The proof of this result follows from the following example.
Let I = If , fk(x) = x, for x ∈ [0,∞), p = (pk) = 1 and v = (vk) = 1.
Consider the K−step space Tk of T defined as follows:
Let (xk) ∈ Tk and (yk) ∈ Tk be such that

yk =

(
xk : if k is odd;
0 : otherwise.

Consider the sequence (xk) defined as xk =
1
2 for all k ∈ N, then

(xk) ∈ [Zλ(F, p, v)]I but its K−step space preimage does not belong to
[Zλ(F, p, v)]I . Thus [Zλ(F, p, v)]I is not monotone. Hence [Zλ(F, p, v)]I is
not solid by Lemma 2.16. 2

Theorem 3.6. The spaces [Zλ(F, p, v)]I and [Zλ0(F, p, v)]
I are sequence

algebras.
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Proof. We prove that [Zλ0(F, p, v)]
I is sequence algebra. For [Zλ(F, p, v)]I

the result can be proved similarly. Let x = (xk), y = (yk) ∈ [Zλ0(F, p, v)]I .
Then ⎧⎨⎩r ∈ N :

1

λr

X
k∈Jr

fk [|vk(Zx)k|]pk ≥

⎫⎬⎭ ∈ I

and ⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zy)k|]pk ≥

⎫⎬⎭ ∈ I.

Therefore⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k(Zy)k|]pk ≥

⎫⎬⎭ ∈ I

Thus (xkyk) ∈ [Zλ0(F, p, v)]I . Hence [Zλ0(F, p, v)]I is a sequence algebra.
2

Theorem 3.7. Let F = (fk) be a sequence of modulus functions. Then

[Zλ0(F, p, v)]
I ⊂ [Zλ(F, p, v)]I ⊂ [Zλ∞(F, p, v)]I

and the inclusions are proper.

Proof. Let x = (xk) ∈ [Zλ(F, p, v)]I . Then there exists L ∈ C such that⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L|]pk ≥

⎫⎬⎭ ∈ I.

We have

fk [|vk(Zx)k − L|]pk ≤ 1
2
fk [|vk(Zx)k − L|]pk + 1

2
fk [|L|]pk .

Taking the supremum over k on both sides we get x = (xk) ∈ [Zλ∞(F, p, v)]I .
The inclusion [Zλ0(F, p, v)]

I ⊂ [Zλ(F, p, v)]I is obvious. The inclusion is
proper follows from the following example.

Let I = Iδ, fk(x) = x2, for x ∈ [0,∞), v = (vk) = 1, p = (pk) = 1 for
all k ∈ N.
(i) Consider the sequence (xk) defined by xk = 1 for all k ∈ N. Then
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(xk) ∈ [Zλ(F, p, v)]I but (xk) 6∈ [Zλ0(F, p, v)]I .

(ii) Consider the sequence (yk) defined as

yk =

(
2 , if k is even;
0 , otherwise.

Then (yk) ∈ [Zλ∞(F, p, v)]I but (yk) 6∈ [Zλ(F, p, v)]I . 2

Theorem 3.8. The spaces [Zλ(F, p, v)]I and [Zλ0(F, p, v)]
I are not conver-

gence free in general.

Proof. The proof of this theorem follows from the following example.
Let I = If , fk(x) = x2, for x ∈ [0,∞), v = (vk) = 1, p = (pk) = 1 for all
k ∈ N.
Consider the sequence (xk) and (yk) defined by xk =

1
k2 and yk = k2 for

all k ∈ N. Then (xk) ∈ [Zλ(F, p, v)]I and [Zλ0(F, p, v)]I , but (yk) does not
belong to both [Zλ(F, p, v)]I and [Zλ0(F, p, v)]

I .
Hence the spaces are not convergence free in general. 2

Theorem 3.9. The spaces [mλ
Z(F, p, v)]

I and [mλ
Z0
(F, p, v)]I are not sep-

arable.

Proof. We shall prove the result for the space [mλ
Z(F, p, v)]

I . Let A be
an infinite subset of N of increasing natural numbers such that A ∈ I. Let

pk =

(
1 , if k ∈ A;
2 , otherwise

and v = (vk) = 1 for all k ∈ N. Let

P0 = (xn) =

(
xn = 1 , n ∈ A;
xn = 0 , otherwise.

Since A is infinite, so P0 is uncountable. Consider the class of open
balls

B1 =

½
B

µ
z,
1

2

¶
: z ∈ P0

¾
. Let C1 be an open cover of [m

λ
Z(F, p, v)]

I and

[mλ
Z0
(F, p, v)]I containing B1. Since B1 is uncountable, so is C1 can not be

reduced to a countable subcover for [mλ
Z(F, p, v)]

I as well as [mλ
Z0
(F, p, v)]I .

Thus [mλ
Z(F, p, v)]

I and [mλ
Z0
(F, p, v)]I are not separable. 2
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