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1. Introduction

Let N, R , and C be the sets of all natural, real and complex numbers
respectively. We write

ω = {x = (xk) : xk ∈ R or C}

the space of all real or complex sequences. Let c∞, c and c0 denote the Ba-
nach spaces of bounded, convergent and null sequences respectively normed
by kxk∞ = sup

k
|xk|. A subspace of ω for example X,Y ⊂ ω is called a se-

quence space. A sequence space X with linear topology is called a K-space
provided each of maps pi → C defined by pi(x) = xi is continuous for all
i ∈ N. A K-space X is called an FK-space provided X is a complete linear
metric space. FK-space whose topology is normable is called a BK-space.
Let X and Y be two sequence spaces and A = (ank) an infinite matrix of
real or complex numbers ank, where n, k ∈ N. Then we say that A defines a
matrix mapping fromX to Y and we denote it by writing A : X → Y . If for
every sequence x = (xk) ∈ X the sequence Ax = {(Ax)n} the A-transform
of x is in Y , where

(Ax)n =
X
k

ankxk, (n ∈ N).(1.1)

By (X,Y ) we denote the class of matrices A such that A : X → Y .
Thus, A ∈ (X,Y ) if and only if series on the right side of (1.1) converges
for each n ∈ N and every x ∈ X.

The approach of constructing the new sequence spaces by means of
the matrix domain of a particular limitation method have been recently
employed by Basar and Altay [1], Malkowsky [16], Ng and Lee [20] and
Wang [33]. Sengonul [27] defined the sequence y = (yi) which is frequently
used as the Zp-transformation of the sequence x = (xi) i.e., (yi) = pxi +
(1 − p)xi−1 where x−1 = 0, p 6= 0, 1 < p < ∞ and Zp denotes the matrix
Zp = (zik) defined by

zik =

⎧⎪⎨⎪⎩
p, (i = k)
1− p, (i− 1 = k); (i, k ∈ N)
0, otherwise.

Following Basar and Altay [1], Sengonul [27] introduced the Zweier se-
quence spaces Z and Z0 as follows:
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Z = {x = (xk) : Zp(x) ∈ c}
Z0 = {x = (xk) : Zp(x) ∈ c0}

Kostyrko et al. [13] introduced the notion of I-convergence based on the
structure of admissible ideal I of subset of natural numbers N. Later on it
was studied by S̆alat [24], S̆alat et. al. [25, 26] and Demirci [2]. Recently it
was further studied by Tripathy and Hazarika [29, 30, 31], Mursaleen and
Mohiuddine [18], Jalal [6, 7], Khan et. al. [9, 10], Tripathy and Sen [32]
and several others.

Let X be a non-empty set. A set I ⊆ 2X (2X denoting the power set
of X ) is said to be an ideal if and only if I is additive i.e., A < B ∈
I ⇒ A ∪ B ∈ I and hereditary i.e., A ∈ I,B ⊆ A ⇒ B ∈ I. A non-
empty family of sets J(I) ⊆ 2X is said to be filter on X if and only if
φ 6∈ J(I) , for A,B ∈ J(I) we have A ∩ B ∈ J(I) and for each A ∈ J(I)
and A ⊆ B ⇒ B ∈ J(I). An Ideal I ⊆ 2X is called non-trivial if I 6= 2X .
A non-trivial ideal I ⊆ 2X is called admissible if {{x} : x ∈ X} ⊆ I. A
non-trivial ideal I is maximal if there cannot exist any non-trivial ideal
J 6= I containing I as a subset. For each ideal I, there is a filter J(I)
corresponding to I i.e., J(I) = {K ⊆ N : Kc ∈ I}, where Kc = N−K.

The idea of modulus function was structured by Nakano in 1953 [19].
A function f : [0,∞)→ [0,∞) is called a modulus function if
(i) f(t) = 0 if and only if t = 0,
(ii) f(t+ u) ≤ f(t) + f(u) for all t, u ≥ 0
(iii) f is non-decreasing, and
(iv) f is continuous from the right at zero.

Ruckle [21, 22, 23] used the idea of a modulus function f to construct
the sequence space

X(f) =

(
x = (xk) :

∞X
k=1

f(|xk|) <∞
)
.

This space is an FK-space, and Ruckle [21] proved that the intersection of
all such X(f) spaces is φ, the space of all finite sequences. The space X(f)
is closely related to the space c1 which is an X(f) space with f(x) = x for
all real x ≥ 0. Thus Ruckle [21, 22, 23] proved that, for any modulus f ,
X(f) ⊂ c1 and X(f)α ⊂ c∞ where
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X(f)α =

(
y = (yk) :

∞X
k=1

f(|ykxk|) <∞
)
.

The space X(f) is a Banach space with respect to the norm [21]

kxk =
∞X
k=1

f(|xk|) <∞.

Spaces of the type X(f) are a special case of the spaces structured by
Gramsch [5]. From the point of view of local convexity, spaces of the type
X(f) are quite pathological. Therefore symmetric sequence spaces, which
are locally convex have been frequently studied by Garling [3, 4], Kothe
[14] and Ruckle [21, 22, 23]. Later Kolk [11, 12] gave an extension of X(f)
by considering a sequence of modulus F = (fk) and defined the sequence
space

X(F ) =

(
x = (xk) :

∞X
k=1

fk(|xk|) ∈ X

)
.

The following well know inequality will be used throughout the article.
Let p = (pk) be any sequence of positive real numbers with 0 ≤ pk ≤
sup
k

pk = H, D = max
n
1, 2H−1

o
then

|ak + bk|pk ≤ D (|ak|pk + |bk|pk)(1.2)

for all k ∈N and ak, bk ∈ C. Also |ak|pk ≤ max
n
1, |a|G

o
for all a ∈ C.

2. Definitions and Preliminaries

Definition 2.1. A sequence space E is said to be solid or normal if (xk) ∈
E implies (αkxk) ∈ E for all sequence of scalars (αk) with |αk| ≤ 1 for all
k ∈ N.

Definition 2.2. A sequence space E is said to be monotone if it contains
the canonical pre images of all its step spaces.

Definition 2.3. A sequence space E is said to be convergence free if (yk) ∈
E whenever (xk) ∈ E and xk = 0 implies yk = 0.

Definition 2.4. A sequence space E is said to be a sequence algebra if
(xkyk) ∈ E whenever (xk), (yk) ∈ E.
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Definition 2.5. A sequence space E is said to be symmetric if (xπ(k)) ∈ E
whenever (xk) ∈ E, where π(k) is a permutation on N.

Definition 2.6. Let K = {k1 < k2 < · · ·} ⊂ N and let E be a sequence
space. A K−step of E is a sequence space λEK = {(xkn) ∈ ω : (xn) ∈ E}.

Definition 2.7. A canonical pre-image of a sequence (xkn) ∈ λEK is a se-
quence (yn) ∈ ω defined by

(yn) =

(
xn , if n ∈ K
0 , otherwise.

Definition 2.8. A canonical pre-image of a step space λEK is a set of canon-
ical pre-images of all the elements in λEK i.e., y is the canonical pre-image
λEK if and only if is the canonical pre-image of some x ∈ λEK .

Definition 2.9. A sequence (xk) ∈ w is said to be I-convergent to a num-
ber L if for every � > 0, {k ∈ N : |xk − L| ≥ �} ∈ I. In this case we write
I − limxk = L. The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ w : {k ∈ N : |xk − L| ≥ �} ∈ I, for some L ∈ C} .

Definition 2.10. A sequence (xk) ∈ w is said to be I-null if L = 0 In this
case we write I − limxk = 0.

Definition 2.11. A sequence (xk) ∈ w is said to be I-Cauchy if for every
� > 0 there exists a number m = m(�) such that {k ∈ N : |xk − xm| ≥ �} ∈
I.

Definition 2.12. A sequence (xk) ∈ w is said to be I-bounded if there
exists M > 0 such that {k ∈ N : |xk| ≥M} ∈ I.

Definition 2.13. A modulus function f is said to satisfy ∆2 -condition if
for all values of u there exists a constantK > 0 such that f(Lu) ≤ KLf(u)
for all values of L > 1.

Definition 2.14. Take for I the class If of all finite subsets of N then If
is a non-trivial admissible ideal and If convergence coincides with the usual
convergence with respect to the metric in X [13].

Definition 2.15. For I = Iδ and A ⊂ N with δ(A) = 0 respectively. Iδ
is a non-trivial admissible ideal, Iδ-convergence is said to be logarithmic
statistical convergence [13].
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The following Lemma will be used for establishing some results of this
article.

Lemma 2.16. Let E be a sequence space. If E is solid then E is monotone
([8], Page 53).

Throughout the paper ZI ,ZI0,Z
I
∞, m

I
Z and mI

Z0
represent the Zweier I-

convergent, Zweier I-null, Zweier bounded, Zweier bounded I-convergent
and Zweier bounded I-null sequence spaces, respectively .

3. New Zweier multiplier sequence spaces

Let λ = (λr) be an increasing sequence of positive real numbers tending to
∞ such that λr ≤ λr+1, λ1 = 1. The generalized de la Vallee Poussin mean

is defined by tr(x) =
1

λr

X
k∈Jr

xk where Jr = [r−λr+1, r] for r = 1, 2, 3, · · ·.

A sequence x = (xk) is said to be (V, λ)− summable to a number L if
tr(x)→ L as r →∞ [15]. If λr = r then (V, λ) summablility is reduced to
Cesáro summability. We denote by ∧ the set of all increasing sequences of
positive real numbers tending to ∞ such that λr ≤ λr + 1, λ1 = 1.

Let F = (fk) be a sequence of modulus functions, v = (vk) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of
positive real numbers.

In this paper we introduce the following classes of multiplier sequence
spaces.

[Zλ(F, p, v)]I =
n
x ∈ ω :

n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k − L|]pk ≥ �, for some L ∈ C

o
∈ I
o
,

[Zλ0 (F, p, v)]
I
=
n
x ∈ ω :

n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k|]

pk ≥ �
o
∈ I
o
,

[Zλ∞(F, p, v)]
I
=
n
x ∈ ω : ∃ K > 0

n
r ∈ N : 1

λr

P
k∈Jr fk [|vk(Zx)k|]

pk ≥ K
o
∈ I
o
.

Also

[mλ
Z(F, p, v)]

I = [Zλ(F, p, v)]I ∩ [Zλ∞(F, p, v)]I

and

[mλ
Z0(F, p, v)]

I = [Zλ0(F, p, v)]
I ∩ [Zλ∞(F, p, v)]I .

For further properties of multiplier sequence spaces see [17, 28, 31]
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Theorem 3.1. Let F = (fk) be a sequence of modulus functions, v = (vk),
be a sequence of strictly positive real numbers and p = (pk) be a bounded se-
quence of positive real numbers, then the classes of sequences [Zλ(F, p, v)]I ,
[Zλ0(F, p, v)]

I and [Zλ∞(F, p, v)]
I are linear spaces over the complex field C.

Proof. We shall prove the theorem for the space [Zλ(F, p, v)]I . Let
x = (xk) and y = (yk) be two elements in [Z

λ(F, p, v)]I and let α, β be two
scalars in R. Then

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭ for some L1 ∈ C

and

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zy)k − L1|]pk ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭ , for some L2 ∈ C

Let

A1 =

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk ≥
�

2

⎫⎬⎭ ∈ I

⎫⎬⎭
and

A2 =

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zy)k − L2|]pk ≥
�

2

⎫⎬⎭ ∈ I

⎫⎬⎭
Since F = (fk) is a sequence of modulus functions, from inequality

(1.2), we have

1

λr

X
k∈Jr

fk [|(αvk(Zx)k + βvk(Zy)k)− (αL1 + βL2)|]pk

≤ D(TH
α )

1

λr

X
k∈Jr

fk [|vk(Zx)k − L1|]pk+D(TH
β )

1

λr

X
k∈Jr

fk [|vk(Zy)k − L2|]pk
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where Tα and Tβ are positive integers such that |α| ≤ Tα and |β| ≤ Tβ. On
the other hand from the above inequality we getn
x ∈ ω :

n
r ∈ N : 1

λr

P
k∈Jr fk [|(αvk(Zx)k + βvk(Zy)k)− (αL1 + βL2)|]pk ≥ �

oo
⊆
n
x ∈ ω :

n
r ∈ N : D(TH

α )
1
λr

P
k∈Jr fk [|vk(Zx)k − L1|]pk ≥ �

oo
Sn

y ∈ ω :
n
r ∈N : D(TH

β )
1
λr

P
k∈Jr fk [|vk(Zy)k − L2|]pk ≥ �

oo
.

The last two sets on the right hand side belongs to I and this completes
the proof. 2

Theorem 3.2. Let (fk) and (gk) be sequences of modulus functions for
some fixed k and satisfy the ∆2-condition. If X is any of the spaces
[Zλ(F, p, v)]I , [Zλ0(F, p, v)]

I and [Zλ∞(F, p, v)]
I , then

(i) X(gk) ⊆ X(fk ◦ gk)
(ii)X(fk) ∩X(gk) ⊆ X(fk + gk).

Proof. (i) Let x = (xk) ∈ [Zλ(G, p, v)]I . Then, we have

⎧⎨⎩y ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

gk [|vk(Zx)k − L|]pk ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭ .(3.1)

Let � > 0 and hence choose 0 < δ < 1 such that fk(t) ≤ � for 0 ≤ t ≤ δ.
We write yk = gk [|vk(Zx)k − L|] and consider

1

λr

X
k∈Jr

[fk(yk)]
pk =

1

λr

X
k∈Jr , yk≤δ

[fk(yk)]
pk +

1

λr

X
k∈Jr , yk>δ

[fk(yk)]
pk

(3.2)

Since F = (fk) is continuous, we have

X
k∈Jr,yk≤δ

[fk(yk)]
pk ≤ [fk(2)]G +

X
k∈Jr,yk≤δ

[(yk)]
pk , G = sup

k
pk.(3.3)

For second summation (i.e yk > δ), we have

yk <
yk
δ

< 1 +
yk
δ
.
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Since F = (fk) is non-decreasing, it follows that

fk(yk) < fk

µ
1 +

yk
δ

¶
≤ 1
2
fk(2) +

1

2
fk

µ
2
yk
δ

¶
.

Again, since F = (fk) satisfies ∆2−condition, we can write

fk(yk) <
1

2
K

µ
yk
δ

¶
fk(2) +

1

2
K

µ
yk
δ

¶
fk(2) = K

µ
yk
δ

¶
fk(2)

Hence, we have

X
k∈Jr,yk>δ

[fk(yk)]
pk ≤ max

½
1,
³
kδ−1fk(2)

´H¾
+
1

λr

X
k∈Jr

[fk(yk)]
pk .(3.4)

From equations (3.1), (3.2), (3.3), (3.4), it follows that

⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

gk (fk [|vk(Zx)k − L|]pk) ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭ .

Hence X(gk) ⊆ X(fk ◦ gk).
(ii) Let x = (xk) ∈ [Zλ(F, p, v)]I ∩ [Zλ(G, p, v)]I . Then we have⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L|]pk ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭
and ⎧⎨⎩x ∈ ω :

⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

gk [|vk(Zx)k − L|]pk ≥ �

⎫⎬⎭ ∈ I

⎫⎬⎭
The rest of the proof follows from the following relation;

n
r ∈N : 1

λr

P
k∈Jr [fk + gk] [|vk(Zx)k − L|]pk ≥ �

o
⊆
n
r ∈N : 1

λr

P
k∈Jr fk [|vk(Zx)k − L|]pk ≥ �

oSn
x ∈ ω : r ∈ N : 1

λr

P
k∈Jr gk [|vk(Zx)k − L|]pk ≥ �

o 2
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Corollary 3.3. X ⊆ X(F ), for X = [Zλ(p, v)]I ,[Zλ0(p, v)]
I , [mλ

Z(p, v)]
I

and [mλ
Z0
(p, v)]I .

Theorem 3.4. The spaces [Zλ0(F, p, v)]
I and [mλ

Z0
(F, p, v)]I are solid and

monotone.

Proof. We shall prove the result for the space [Zλ0(F, p, v)]
I , the result

for [mλ
Z0
(F, p, v)]I can be proved similarly. Let x = (xk) ∈ [Zλ0(F, p, v)]I ,

then ⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k|]pk ≥ �

⎫⎬⎭ ∈ I(3.5)

Let αk be a sequence of scalars with |αk| ≤ 1 for all k ∈ N, then the
result follows from (3.5) and the following inequality

fk [|αkvk(Zx)k|]pk ≤ |αk|fk [|vk(Zx)k|]pk ≤ fk [|vk(Zx)k|]pk .

The space [Zλ0(F, p, v)]
I is monotone follows from Lemma 2.16. 2

Theorem 3.5. The spaces [Zλ(F, p, v)]I and [mλ
Z(F, p, v)]

I are neither solid
nor monotone in general.

Proof. The proof of this result follows from the following example.
Let I = If , fk(x) = x, for x ∈ [0,∞), p = (pk) = 1 and v = (vk) = 1.
Consider the K−step space Tk of T defined as follows:
Let (xk) ∈ Tk and (yk) ∈ Tk be such that

yk =

(
xk : if k is odd;
0 : otherwise.

Consider the sequence (xk) defined as xk =
1
2 for all k ∈ N, then

(xk) ∈ [Zλ(F, p, v)]I but its K−step space preimage does not belong to
[Zλ(F, p, v)]I . Thus [Zλ(F, p, v)]I is not monotone. Hence [Zλ(F, p, v)]I is
not solid by Lemma 2.16. 2

Theorem 3.6. The spaces [Zλ(F, p, v)]I and [Zλ0(F, p, v)]
I are sequence

algebras.
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Proof. We prove that [Zλ0(F, p, v)]
I is sequence algebra. For [Zλ(F, p, v)]I

the result can be proved similarly. Let x = (xk), y = (yk) ∈ [Zλ0(F, p, v)]I .
Then ⎧⎨⎩r ∈ N :

1

λr

X
k∈Jr

fk [|vk(Zx)k|]pk ≥ �

⎫⎬⎭ ∈ I

and ⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zy)k|]pk ≥ �

⎫⎬⎭ ∈ I.

Therefore⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k(Zy)k|]pk ≥ �

⎫⎬⎭ ∈ I

Thus (xkyk) ∈ [Zλ0(F, p, v)]I . Hence [Zλ0(F, p, v)]I is a sequence algebra.
2

Theorem 3.7. Let F = (fk) be a sequence of modulus functions. Then

[Zλ0(F, p, v)]
I ⊂ [Zλ(F, p, v)]I ⊂ [Zλ∞(F, p, v)]I

and the inclusions are proper.

Proof. Let x = (xk) ∈ [Zλ(F, p, v)]I . Then there exists L ∈ C such that⎧⎨⎩r ∈ N :
1

λr

X
k∈Jr

fk [|vk(Zx)k − L|]pk ≥ �

⎫⎬⎭ ∈ I.

We have

fk [|vk(Zx)k − L|]pk ≤ 1
2
fk [|vk(Zx)k − L|]pk + 1

2
fk [|L|]pk .

Taking the supremum over k on both sides we get x = (xk) ∈ [Zλ∞(F, p, v)]I .
The inclusion [Zλ0(F, p, v)]

I ⊂ [Zλ(F, p, v)]I is obvious. The inclusion is
proper follows from the following example.

Let I = Iδ, fk(x) = x2, for x ∈ [0,∞), v = (vk) = 1, p = (pk) = 1 for
all k ∈ N.
(i) Consider the sequence (xk) defined by xk = 1 for all k ∈ N. Then
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(xk) ∈ [Zλ(F, p, v)]I but (xk) 6∈ [Zλ0(F, p, v)]I .

(ii) Consider the sequence (yk) defined as

yk =

(
2 , if k is even;
0 , otherwise.

Then (yk) ∈ [Zλ∞(F, p, v)]I but (yk) 6∈ [Zλ(F, p, v)]I . 2

Theorem 3.8. The spaces [Zλ(F, p, v)]I and [Zλ0(F, p, v)]
I are not conver-

gence free in general.

Proof. The proof of this theorem follows from the following example.
Let I = If , fk(x) = x2, for x ∈ [0,∞), v = (vk) = 1, p = (pk) = 1 for all
k ∈ N.
Consider the sequence (xk) and (yk) defined by xk =

1
k2 and yk = k2 for

all k ∈ N. Then (xk) ∈ [Zλ(F, p, v)]I and [Zλ0(F, p, v)]I , but (yk) does not
belong to both [Zλ(F, p, v)]I and [Zλ0(F, p, v)]

I .
Hence the spaces are not convergence free in general. 2

Theorem 3.9. The spaces [mλ
Z(F, p, v)]

I and [mλ
Z0
(F, p, v)]I are not sep-

arable.

Proof. We shall prove the result for the space [mλ
Z(F, p, v)]

I . Let A be
an infinite subset of N of increasing natural numbers such that A ∈ I. Let

pk =

(
1 , if k ∈ A;
2 , otherwise

and v = (vk) = 1 for all k ∈ N. Let

P0 = (xn) =

(
xn = 1 , n ∈ A;
xn = 0 , otherwise.

Since A is infinite, so P0 is uncountable. Consider the class of open
balls

B1 =

½
B

µ
z,
1

2

¶
: z ∈ P0

¾
. Let C1 be an open cover of [m

λ
Z(F, p, v)]

I and

[mλ
Z0
(F, p, v)]I containing B1. Since B1 is uncountable, so is C1 can not be

reduced to a countable subcover for [mλ
Z(F, p, v)]

I as well as [mλ
Z0
(F, p, v)]I .

Thus [mλ
Z(F, p, v)]

I and [mλ
Z0
(F, p, v)]I are not separable. 2
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