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Abstract

In this note we establish a result of differentiability for the
mild solution of the inhomogeneous abstract Cauchy problem
when the underlying space is reflexive.
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1. Introduction.

In this work we are concerned with regularity properties of solutions
of the first order abstract Cauchy problem (in short, ACP). We refer
the reader to [3, 10] for the theory of strongly continuous semigroup
operators and the associated ACP.

Let X be a Banach space endowed with a norm ‖ · ‖. Henceforth
T (t) is a strongly continuous semigroup of operators on X with infi-
nitesimal generator A.

The existence of solutions of the first order abstract Cauchy prob-
lem

x′(t) = Ax(t) + h(t), 0 ≤ t ≤ a,(1.1)

x(0) = x0,(1.2)

it has been treated in several works. We only mention here the texts
[3, 10] and the references cited therein. Similarly, the existence of solu-
tions of the semilinear abstract Cauchy problem it has been discussed
in [1, 9].

Assuming that h : [0, a] → X is integrable the function given by

x(t) = T (t)x0 +
∫ t

0
T (t− s)h(s) ds, 0 ≤ t ≤ a,(1.3)

is said mild solution of (1.1)-(1.2). In the case in which h is continuous
, the function x(·) is called a classic solution on [0, a] of (1.1)-(1.2) if
x is a function of class C1, x(t) ∈ D(A) and (1.1) is verified.

The existence of classical solutions of (1.1)-(1.2) as well as some
weaker forms of differentiability of solutions have been studied in a
number of works. We refer the reader to [2, 8, 10, 12, 13, 14] and the
references therein indicated.

The purpose of this note is to establish a new condition in order
to the mild solution x(·) turn to be a classical solution .

Next the notation C([0, a]; X) stands for the space of continuous
functions from [0, a] into X, whilst BV ([0, a]; X) represents the space
of functions with bounded variation from [0, a] into X. For a function
h ∈ BV ([0, a]; X) we denote by V (h) the variation of h on [0, a] and
by v(t, h) the variation of h on [0, t], for 0 ≤ t ≤ a. Additional termi-
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nology and notations are those generally used in functional analysis.
In particular, X∗ denotes the dual space of X.

2. Results.

In this section h denotes a continuous function of bounded variation
on a fixed interval [0, a], a > 0. We define the translation of h by

Tth(s) =

{
h(s + t), s ≤ a− t,

h(a), s ≥ a− t,

for t ≥ 0. Let µ(t, h) = V (Tth− h).
We introduce the following condition for a function h ∈ C([0, a]; X)∩

BV ([0, a]; X).
(H0) µ(t, h) → 0, as t → 0+.
Initially we discuss some examples.

Example 1. If h ∈ W 1,1([0, a]; X), then µ(t, h) → 0, t → 0+.

Example 2. Let h : [0, 1] → IR be the function defined in [4], Ex-
ercise 4.19. Let E be a perfect nowhere dense set with measure 0
included in [0, 1]. Let (ak, bk), k ∈ IN, be disjoint intervals such that
(0, 1) \ E =

⋃∞
k=1(ak, bk) and let

∑∞
k=1 ck be a convergent series of

positive number with sum equal to 1. For each x ∈ [0, 1] let

I(x) = {k : [ak, bk] ∩ [0, x] 6= Φ}
and define

h(x) =
∑

k∈I(x)

ck.(2.1)

It is clear that h(0) = 0, h(1) = 1. Moreover, h is continuous and
nondecreasing with h′ = 0, a.e. Thus h is a singular function . Now
we establish that h does not satisfy (H0). In fact, from (2.1) it follows
easily that for each t > 0 and 0 ≤ s ≤ 1− t,

h(s + t)− h(s) =
∑

k∈I

ck,(2.2)
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where I = {k ∈ IN : ak ∈ (s, s + t]}. In addition, for n ∈ IN we can

choose t > 0 small enough such that
n⋃

i=1

[ai, bi] ⊆ [0, 1− t], ai + 3t <

bi, and, for each k = 1, · · · , n, ak − t /∈
n⋃

i=1, i 6=k

[ai, bi].

Defining αi = ai − t/2 and βi = ai + 2t it follows from (2.2) that
h(αi + t)− h(αi) = ci and h(βi + t)− h(βi) = 0. From this we obtain
that

V (Tth− h) ≥
n∑

i=1

|(Tth− h)(βi)− (Tth− h)(αi)|

=
n∑

i=1

|h(βi + t)− h(βi)− (h(αi + t)− h(αi))|

=
n∑

i=1

ci

which implies that µ(t, h) does not converge to 0 as t → 0+.

Example 3. Let h : [0, 1] → IR be the singular function defined in
[6], Example 18.8. As above, h(0) = 0, h(1) = 1, h is continuous and
strictly increasing and h′ = 0, a.e. We will show that this function
satisfies the assumption (H0). Initially, for completeness we include
here the construction carried out in [6].

Let (tn)n be a sequence in (0, 1). Set F1(0) = 0, F1(1) = 1,

F1(
1

2
) =

1 + t1
2

and define F1 to be linear on [0, 1
2
] and [1

2
, 1]. Suppose

that F1, F2, · · · , Fn have been defined. Then define

Fn+1

(
k

2n

)
= Fn

(
k

2n

)
, for k = 0, 1, · · · , 2n,

Fn+1

(
2k+1
2n+1

)
= 1−tn+1

2
Fn

(
k
2n

)
+ 1+tn+1

2
Fn

(
k+1
2n

)
,

for k = 0, 1, · · · , 2n − 1,
and complete the definition of Fn+1 as a continuous linear func-

tion in the intervals [
k

2n+1
,
k + 1

2n+1
], for k = 0, 1, · · · , 2n+1 − 1. It
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is shown in [6] that (Fn)n is a nondecreasing sequence. Thus this se-
quence converges to a function h which satisfies the properties already
mentioned. Applying now the Dini’s theorem ([11]) we obtain that
the convergence of (Fn)n is uniform. Since (TtFn − Fn)n converges u-
niformly to Tth− h, as n →∞, and this convergence is also uniform
on t ≥ 0, it is follows that µ(t, Fn) → µ(t, h), n → ∞, and this
convergence is uniform on t. In view of Fn is absolutely continuous ,
from Example 1 we infer that µ(t, Fn) → 0, as t → 0+, which implies
that µ(t, h) → 0, as t → 0+.

To study the regularity of solutions of the abstract Cauchy problem
(1.1)-(1.2) we begin by establishing some preliminary lemmas.

In the sequel we denote by M a positive constant such that ‖T (t)‖ ≤
M, 0 ≤ t ≤ a. Moreover, for a fixed h, we use the notation

u(t) =
∫ t

0
T (t− s)h(s) ds,(2.3)

Lemma 2.1. Assume that X is a reflexive space . Let T (·) be a
strongly continuous semigroup of operators on X and let h : [0, a] →
X be a continuous function of bounded variation which satisfies the
assumption (H0). Then the Riemann-Stieltjes integral

w(t) =
∫ t

0
T (t− s) dsh =

∫ t

0
T (s) dsh(t− s)

exists in the weak topology and define a continuous function w :
[0, a] → X.

Proof. Let Λ : X∗ → IC be defined by

Λ(x∗) =
∫ t

0
< T (t− s)∗x∗, dsh > .

The Riemann-Stieltjes integral in the above expression exists because
T (·)∗x∗ is a continuous function ([10]) and h has bounded variation
([7]). Moreover, Λ is linear and

|Λ(x∗)| ≤ M‖x∗‖V (h).

Consequently, Λ ∈ X∗∗ and in view of that X is reflexive we infer
the existence of w(t) ∈ X such that Λ(x∗) =< x∗, w(t) >, for all
x∗ ∈ X∗.
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On the other hand, for t < 1 and τ small enough, from the relations

w(t + τ)− w(t) =
∫ t+τ

0
T (s) dsh(t + τ − s)−

∫ t

0
T (s) dsh(t− s)

=

∫ t

0
T (t− s) ds[h(τ + s)− h(s)]

+
∫ τ
0 T (t + s) dsh(τ − s)

we deduce that

‖w(t + τ)− w(t)‖ ≤ Mµ(τ, h) + Mv(τ, h).

Since µ(τ, h) → 0, τ → 0, because the condition (H0) holds and
v(τ, h) → 0, τ → 0, by the Proposition I.2.9 in [7]) the previous
estimation shows that w(·) is right continuous at t. Similarly, one can
prove that w is left continuous at t > 0.

Next we denote by χE the characteristic function of a set E.

Lemma 2.2. Let h : [0, a] → X be the step function h =
n∑

i=1

xiχIi
,

where Ii are intervals and {I1, · · · , In} is a partition of [0, a]. Then the
function u given by (2.3) is piecewise smooth, u(t) ∈ D(A), Au(·) is
continuous on [0, a] and u′(t) = Au(t)+h(t), t /∈ P, where P denotes
the set formed by the extreme points of intervals Ii, i = i, · · · , n.

Proof. Applying the linearity of u in terms of h, it is sufficient to
prove the assertion for a function h = xχI where I is an interval of
type [t1, t2]. In fact, in this case, u(t) is given by

u(t) =





0, 0 ≤ t ≤ t1,

∫ t−t1

0
T (s)x ds, t1 ≤ t ≤ t2,

∫ t−t1

t−t2
T (s)x ds, t2 ≤ t.
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From the properties of semigroups we infer that u(t) ∈ D(A) and
that

Au(t) =





0, 0 ≤ t ≤ t1,

T (t− t1)x− x, t1 ≤ t ≤ t2,

T (t− t1)x− T (t− t2)x, t2 ≤ t.

This shows that Au(·) is continuous . Moreover, it is immediate to
verify that u′(t) = Au(t) + h(t), t 6= t1, t2.

Now we can prove the main result of this note.

Theorem 2.1. Assume that X is a reflexive space and let h be a
continuous function of bounded variation on [0, a] which satisfies as-
sumption (H0). Let x0 ∈ D(A). Then the mild solution of (1.1)-(1.2)
is a classical solution .

Proof. We consider a sequence (hn)n of step functions , where
each hn is given by

hn =
n∑

i=1

h(ti)χIi
.

In this expression we have denoted Ii = [ti−1, ti), i = 1, · · · , n−1, and

In = [tn−1, tn], where the points ti have been chosen as ti =
a

n
i, i =

0, 1, · · · , n.
It is clear that the sequence (hn)n converge uniformly to h. Let

un be the function given by (2.3), with hn instead of h. Then, un →
u, n → ∞, uniformly on [0, a]. Moreover, by Lemma 2.2 we have
that un(t) ∈ D(A) and, if we fix 0 ≤ t ≤ a and n ∈ IN , then t ∈ Ik,
for some k = 1, · · · , n. From our definitions we can write

Aun(t) = A
k−1∑

i=1

∫ ti

ti−1

T (t− s)h(ti) ds + A
∫ t

tk−1

T (t− s)h(tk) ds

=
k−1∑

i=1

[T (t− ti−1)− T (t− ti)]h(ti) + [T (t− tk−1)− I]h(tk)

=
k−1∑

i=1

T (t− ti−1)[h(ti)− h(ti−1)] + T (t− tk−1)
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[h(t)− h(tk−1)] + T (t− tk−1)[h(tk)− h(t)] +

T (t)h(0)− h(tk)(2.4)

so that
‖Aun(t)‖ ≤ MV (h) + (M + 1)‖h‖∞.

This shows that (Aun(t))n is a bounded sequence. Consequently, there
is a subsequence which converges to z(t) ∈ X in the weak topology.
Moreover, from (2.4) it follows that

z(t) = w(t)− h(t) + T (t)h(0).

An standard argument shows that the full sequence (Aun(t))n con-
verges to w(t). As A is a closed operator this implies that u(t) ∈ D(A)
and z(t) = Au(t).

An application of Lemma 2.1 yields that Au(·) is a continuous
function . On the other hand, from Lemma 2.2 we have

u′n(t) = Aun(t) + hn(t), n ∈ IN, t 6= i/n, i = 1, · · · , n− 1,

so that for each x∗ ∈ X∗ we obtain

< x∗, un(t) >=
∫ t

0
< x∗, Aun(s) + hn(s) > ds

and taking limit as n →∞, it follows that

< x∗, u(t) >=
∫ t

0
< x∗, Au(s) + h(s) > ds

which implies that

u(t) =
∫ t

0
Au(s) ds +

∫ t

0
h(s) ds.

This shows that u(·) is a function of class C1 that satisfies (1.1)-(1.2).
A similar result holds for the second order abstract Cauchy prob-

lem ([5]).
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