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Abstract

A cactus is a connected graph whose all the blocks are isomorphic
to cycle or complete graph on n vertices. We introduce symmetric
regular cacti and a procedure for their construction. We discuss some
characteristics of symmetric regular cacti. The number of symmetric
regular cacti on given number of vertices are also enumerated. A
possible application of present work to a real world problem for the
committee formation is also suggested.
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1. Introduction

We begin with the definition of a graph which is a triple consisting of a
vertex set V (G), an edge set E(G), and a relation that associates each
edge with two vertices called its endpoints. The edge e having identical
end vertices is called a loop and two distinct edges with same end vertices
are called parallel edges. A graph is called simple if it has neither loops
nor parallel edges. A graph G is called bipartite graph if the vertex set
V (G) can be partitioned into two nonempty subsets X and Y in such a
way that each edge of G has one end vertex in X and other end vertex in
Y . A complete graph Kn is a simple graph in which each pair of distinct
vertices is joined by an edge. A walk in a graph G is a finite sequence W =
v0e1v1e2v2...vk−1ekvk whose terms are alternately vertices and edges such
that, for 1 ≤ i ≤ k, the edge ei has ends vi−1 and vi. A path Pn is a walk
in which vertices are distinct. A path in which v0 = vk is called a cycle
denoted by Cn. A graph without any cycle is called acyclic graph. A vertex
u is said to be connected to a vertex v in a graph G if there is a path in G
from u to v and a graph G is called connected if every two of its vertices are
connected otherwise it is called disconnected. If G has an u,v-path, then
the distance from u to v, written d(u, v), is the least length of a u,v-path.
The diameter of G denoted by diam G is max{d(u, v) : u, v ∈ V (G)}. The
eccentricity of the vertex u, written as �(u), is max{d(u, v) : v ∈ V (G)}.
The radius of a graph G, written as rad G, is min{�(u) : u ∈ V (G)}. The
center of a graph G is the subgraph induced by the vertices of minimum
eccentricity. A vertex v of a graph G is called a cut vertex if its deletion
leaves a graph disconnected. A block of a graph G is a maximal connected
subgraph of G that has no cut-vertices.

Definition 1.1. An n-complete cactus C(Kn) is a simple graph whose all
the blocks are isomorphic to Kn.

Definition 1.2. An n-complete k-regular cactus C(Kn(k)) is an n-complete
cactus in which each cut vertex is exactly in k blocks.

For n-complete k-regular cactus, readers should not be confused with
the word regularity as the regularity is not in the sense of degree but it is
the total number of blocks in which the given cut vertex lies. The block
which contains only one cut vertex is called leaf block and that cut vertex is
known as leaf block cut vertex. In n-complete k-regular cactus the vertices
which are not cut vertices are known as leaf vertices.



Symmetric regular cacti-properties and enumeration 263

Definition 1.3. A symmetric n-complete k-regular cactus SC(Kn(k)) is
an n-complete k-regular cactus in which the eccentricity of each leaf vertex
is the same.

Some people defines the cactus with blocks isomorphic to cycle Cn which
is known as n-ary cactus[1, 2] but we have considered here Kn instead of
Cn in more general sense. Throughout this discussion by symmetric regular
cactus we mean symmetric n-complete k-regular cactus with p vertices, b
blocks and q edges. Sometimes we use notation SC(Kn(k))(d) for symmet-
ric n-complete k-regular cactus of diameter d. A single block is recognize
as a trivial cactus is of no importance for us as it is isomorphic to Kn and
will satisfy all the properties of Kn. For all other standard terminology and
notations we refer to West[3].

2. Construction of Symmetric Regular Cactus

We describe the procedure to construct symmetric regular cactus of odd
and even diameter.

2.1. Symmetric regular cactus of odd diameter:

Let Kn be the complete graph on n vertices say v1, v2,...,vn which is a
trivial cactus. Take more n(k−1) copies of Kn. For 1 ≤ i ≤ n, identify one
vertex of each copy of Kn from a bunch of (k − 1) copies of Kn with each
vi. Then the resultant graph is a symmetric n-complete k-regular cactus
with diameter three. In this symmetric n-complete k-regular cactus, the
vertices v1, v2,...,vn are now cut vertices and all other vertices are leaf
vertices. Continuing this process, we can construct a symmetric regular
cactus of odd diameter.

2.2. Symmetric regular cactus of even diameter:

Let v0 be any vertex. Take k copy of Kn and identify one vertex of each
Kn with v0. Then it is symmetric n-complete k-regular cactus of diameter
two. Here v0 is a cut vertex and all other vertices are leaf vertices. Now to
construct desired symmetric n-complete k-regular cactus with even diame-
ter follow the procedure as we have described in section 2.1 for symmetric
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regular cactus of required even diameter.

We note that the center of a symmetric regular cactus is either a vertex
or a block and accordingly it is called block centered symmetric regular
cactus or vertex center symmetric regular cactus. If diameter is odd then
it is block centered and if diameter is even then it is vertex centered. In a
symmetric n-complete k-regular cactus SC(Kn(k)), a vertex v is a terminal
or leaf vertex if d(v) = n−1 and the block which contains a terminal vertex
is called terminal or leaf block. Also a vertex which is not leaf vertex is
known as cut vertex or internal vertex and a block which is not leaf block
is known as internal block.

Example 2.1. A 4-complete cactus and a symmetric 4-complete 2-regular
cactus of diameter 5 and 6 are shown in Figure 1 and Figure 2 respectively.

Figure 1 : 4-complete cactus.

Figure 2 : Symmetric 4-complete 2-regular cactus of diameter 5 and 6.

Marisol M
fig1

Marisol M
fig2
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Observation 2.2. From the definition and construction of non trivial
symmetric regular cactus, it is clear that the

• 2 ≤ n ≤ p

• 2 ≤ d ≤ p− 1

• 2 ≤ k ≤ p− 1

3. Properties of Symmetric Regular Cactus

Theorem 3.1. For any SC(Kn(k)) of diameter d,

p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
n+

d−1
2X

i=1

n(k − 1)i(n− 1)i; if d is odd

1 +

d
2X

i=1

k(k − 1)i−1(n− 1)i; if d is even

b =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 +

d−1
2X

i=1

n(k − 1)i(n− 1)i−1; if d is odd

k +

d
2
−1X
i=1

k(k − 1)i(n− 1)i; if d is even

Moreover, in the formula of p and b, the last term of the summation
gives the total number of leaf vertices and leaf blocks respectively while the
sum of remaining terms gives the total number of cut vertices and internal
blocks respectively.

Proof: We prove this theorem using induction on d. If d = 1 then cactus is
just one block which has n leaf vertices as each vertex is of degree n− 1. If
d = 2 then regular cactus is a vertex centered and it is k copies of complete
graph Kn each one sharing a common vertex. Therefore the number of
vertices p = kn − k + 1 = 1 + k(n − 1) and the common vertex is a cut
vertex and the regular cactus has k(n − 1) leaf vertices while the number
of blocks is k.

Let the result is true for d = t then
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Case-1: If t is odd then it has n +

t−1
2X

i=1

n(k − 1)i(n − 1)i vertices and

1 +

d−1
2X

i=1

n(k− 1)i(n− 1)i−1 blocks. In the formula of p and b, the last term

of the summation which are n(k−1) t−12 (n−1) t−12 and n(k−1) t−12 (n−1) t−32
gives the total number of leaf vertices and leaf blocks respectively while the
sum of remaining terms gives the total number of cut vertices and internal
blocks respectively. Now again from a bunch of k − 1 copies of Kn iden-
tify the one vertex of each copy of Kn with each leaf vertex then the total
number of vertices p

= n+

t−1
2X

i=1

n(k − 1)i(n− 1)i + n(k − 1)
t−1
2 (k − 1)(n− 1)

t−1
2 (n− 1)

= n+

t+1
2X

i=1

n(k − 1)i(n− 1)i;

the total number of blocks b

= 1 +

t−1
2X

i=1

n(k − 1)i(n− 1)i−1 + n(k − 1)
t−1
2 (k − 1)(n− 1)

t−3
2 (n− 1)

= 1 +

t+1
2X

i=1

n(k − 1)i(n− 1)i−1.

Case-2: If t is even then it has 1 +

t
2X

i=1

k(k − 1)i−1(n − 1)i vertices and

k+

t
2
−1X
i=1

k(k− 1)i(n− 1)i blocks. In the formula of p and b, the last term of

the summation which are k(k − 1) t2−1(n− 1) t2 and k(k − 1) t2−1(n− 1) t2−1
gives the total number of leaf vertices and leaf blocks respectively while the
sum of remaining terms gives the total number of cut vertices and internal
blocks respectively. Now again from a bunch of k− 1 copies of Kn identify
a vertex of each copy of Kn with each leaf vertex then the total number of
vertices p

= 1 +

t
2X

i=1

k(k − 1)i−1(n− 1)i + k(k − 1) t2−1(k − 1)(n− 1) t2 (n− 1)
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= 1 +

t
2
+1X
i=1

k(k − 1)i−1(n− 1)i;

the total number of blocks b

= k +

t
2
−1X
i=1

k(k − 1)i(n− 1)i + k(k − 1) t2−1(k − 1)(n− 1) t2−1(n− 1)

= 1 +

t
2X

i=1

k(k − 1)i(n− 1)i.

Hence, the result is true for d = t+ k. Therefore, the result is true for all
d.

Observation 3.2. For symmetric regular cactus on p vertices, the trivial
cactus Kn gives minimum value of d = 1 and a path on p vertices gives the
maximum value of d = p− 1.

Theorem 3.3. If SC(Kn(k)) is symmetric regular cactus with p vertices
then it has precisely 1

2n(p− 1) edges.

Proof: Let SC(Kn(k)) be a symmetric regular cactus with p vertices then

it has 1+

d−1
2X

i=1

n(k−1)i(n−1)i−1 blocks if d is odd and k+
d
2
−1X
i=1

k(k−1)i(n−1)i

blocks if d is even. Now as each block is isomorphic to Kn it has
1
2n(n− 1)

edges. Therefore the total number of edges q

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
{1 +

d−1
2X

i=1

n(k − 1)i(n− 1)i−1}1
2
n(n− 1); if d is odd

{k +
d
2
−1X
i=1

k(k − 1)i(n− 1)i}1
2
n(n− 1); if d is even

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
2n{(n− 1) +

d−1
2X

i=1

n(k − 1)i(n− 1)i}; if d is odd

1
2n{k(n− 1) +

d
2X

i=2

k(k − 1)i−1(n− 1)i}; if d is even
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
2n{n+

d−1
2X

i=1

n(k − 1)i(n− 1)i − 1}; if d is odd

1
2n{1 +

d
2X

i=1

k(k − 1)i−1(n− 1)i − 1}; if d is even

= 1
2n(p− 1). Hence the result.

Corollary 3.4. There can not exist symmetric regular cacti on even num-
ber of vertices with odd completeness of blocks.

Proof: We prove by contradiction. Suppose that there exists a symmetric
regular cactus on even number of vertices with odd completeness of blocks
then p is even and n is odd and hence 1

2n(p − 1) is not integer. But by
Theorem 3.3, the total number of edges in a symmetric regular cactus is q
= 1

2n(p− 1) which is not an integer, a contradiction. Hence the result.

Theorem 3.5. A symmetric n-complete k-regular cactus is Eulerian if and
only if n is odd.

Proof: We use the fundamental result that a connected graphG is Eulerian
if and only if each vertex in G has even degree. The degree of each vertex
in symmetric n-complete k-regular cactus is even if and only if n is odd
and hence the result.

Observation 3.6. A symmetric n-ary k-regular cactus is always Eulerian.

4. Enumeration of Symmetric Regular Cactus

In this section, we enumerate all symmetric regular cactus on given p ver-
tices as follows.

Theorem 4.1. The total number of symmetric n-complete k-regular cac-
tus of diameter d on p vertices is the total number of positive integral
solutions of equations

n(Φd+1
2
((n−1)(k−1)) = p for odd d and 1+k(n−1)Φd

2
((n−1)(k−1)) = p

for even d,
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where Φp(x) = 1 + x+ x2 + ...+ xp−1.

Proof: Let SC(Kn(k))(d) be the symmetric n-complete k-regular on p
vertices and diameter d. Then by Theorem 3.1, the positive integers n, k
and d satisfy the equations

p = n+

d−1
2X

i=1

n(k− 1)i(n− 1)i if d is odd and p = 1+

d
2X

i=1

k(k− 1)i−1(n− 1)i

if d is even.
i.e n(Φ d+1

2
((n−1)(k−1)) = p if d is odd and 1+k(n−1)Φd

2
((n−1)(k−1)) = p

if d is even, where Φp(x) = 1 + x+ x2 + ...+ xp−1.
On the other hand, for p there exist positive integers n, k and d which

satisfy the equations n(Φd+1
2
((n− 1)(k − 1)) = p for odd d and 1 + k(n−

1)Φd
2
((n− 1)(k− 1)) = p for even d, where Φp(x) = 1+ x+ x2+ ...+ xp−1.

Now, construct symmetric n-complete k-regular cactus on given number of
p vertices by employing the construction procedure described in sections
2.1 and 2.2 respectively.

Corollary 4.2. A trivial cactus is the only symmetric regular cactus of
odd diameter on prime number of vertices.

Proof: Suppose that there exists a nontrivial symmetric regular cactus,
where d odd, p is prime and 3 ≤ d ≤ p − 1, 1 < n < p and 1 < k < p − 1
such that

n(Φd+1
2
((n− 1)(k − 1))) = p,

i.e. n+n(k−1)(n−1)+n(k−1)2(n−1)2+ ...+n(k−1) d−12 (n−1) d−12 = p

i.e. n(1+ (k− 1)(n− 1)+ (k− 1)2(n− 1)2+ ...+(k− 1) d−12 (n− 1) d−12 ) = p

i.e. n|p which contradicts the fact that p is prime. Hence the result.

Corollary 4.3. SC(K2(p)) is the only symmetric regular cactus of even
diameter on p+ 1 vertices, where p is prime.

Proof: Suppose that there exists a symmetric regular cactus other than
SC(K2(p)) with d is even and 2 < d ≤ p − 1, 2 < n ≤ p and 1 < k < p
such that
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1 + k(n− 1)Φd
2
((n− 1)(k − 1)) = p+ 1

i.e. 1+k(n−1)+k(k−1)(n−1)2+k(k−1)2(n−1)3+...+k(k−1) d2−1(n−1)d2 =
p+ 1.

i.e. k(n−1)[1+(k−1)(n−1)+(k−1)2(n−1)2+...+(k−1)d2−1(n−1) d2−1] = p.

i.e. k|p which contradicts the fact that p is prime. Hence the result.

Example 4.4. In the following Table-1 all symmetric regular cacti with
number of vertices ≤ 10 is given.
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Vertices Total No. Cactus Diameter Regularity Completeness
p of cactus Type d k n

1 1 Odd = 1 0 1 1

2 1 Odd = 1 1 1 2

3 2 Odd = 1 1 1 3
Even = 1 2 2 2

4 3 Odd = 2 1 1 4
3 2 2

Even = 1 2 3 2

5 4 Odd = 1 1 1 5
Even = 3 2 2 3

2 4 2
4 2 2

6 4 Odd = 3 1 1 6
3 3 2
5 2 2

Even = 1 2 5 2

7 5 Odd = 1 1 1 7
Even = 4 2 2 4

2 3 3
2 6 2
6 2 2

8 4 Odd = 3 1 1 8
3 4 2
7 2 2

Even = 1 2 7 2

9 6 Odd = 2 1 1 9
3 2 3

Even = 4 2 2 5
2 4 3
2 8 2
8 2 2

10 6 Odd = 3 1 1 10
3 5 2
9 2 2

Even = 3 2 3 4
2 9 2
4 3 2
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5. Drawing of Symmetric Regular Cactus

For more clarity of the concept, all the symmetric regular cacti on 9 vertices
are given.

Figure 3 : Trivial Cactus on 9 vertices.

Figure 4 : Symmetric 3-complete 2-regular cactus of diameter 3.

Figure 5 : Symmetric 5-complete 2-regular cactus of diameter 2.

Marisol M
fig-3

Marisol M
fig-4

Marisol M
fig-5
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Figure 6 : Symmetric 3-complete 4-regular cactus of diameter 2.

Figure 7 : Symmetric 2-complete 8-regular cactus of diameter 2.

Figure 8 : Symmetric 2-complete 2-regular cactus of diameter 8.

Marisol M
fig-6

Marisol M
fig-7

Marisol M
fig-8
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6. Application

In this section, we discuss an application of symmetric regular cactus. The
formation of committees in any adminstration often gives rise to a sym-
metric regular cactus provided the number of persons in each committee
is equal to say n. Then a single person or a committee which is formed
for any purpose will can form other committees under them. Any mem-
ber(s) of committee pass over a specific task to other committee under
own leadership. Such arrangement will create either vertex centered sym-
metric regular cactus or block centered symmetric regular cactus. Again
each member of this committee make other committees to make their work
easy. Continuing in this way the formation of committees will give rise to
a symmetric regular cactus. The main advantage of such model is that the
work is evenly distributed and the whole system will work effectively. This
model is more fruitful only if the graph remains connected.

7. Concluding Remarks

We have introduced a concept of symmetric n-complete k-regular cacti and
also obtain the exact number of vertices, blocks and edges for the same.
The symmetric n-complete k-regular cacti on given number of vertices are
also enumerated.
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