Fuzzy (b, θ)-separation axioms

  • Diganta Jyoti Sarma Central Institute of Technology.
  • Santanau Acharjee Debraj Roy College.

Resumen

Dutta and Tripathy recently introduced fuzzy (b, θ)-open set in fuzzy topology. The aim of this paper is to introduce fuzzy (b, θ)-separation axioms with the help of fuzzy (b, θ)-open set and to establish some properties by defining fuzzy (b, θ)-neighbourhood and fuzzy (b, θ)-quasi neighbourhood of a fuzzy point.

Biografía del autor

Diganta Jyoti Sarma, Central Institute of Technology.
Department of Mathematics.
Santanau Acharjee, Debraj Roy College.
Department of Mathematics, Economics and Computational Rationality Group.

Citas

S. Benchalli and J. Karnel, “On Fuzzy b-open set in fuzzy topological spaces”, Journal of Computer and Mathematical Sciences, vol. 1, no. 2 pp. 127-134, 2010. [On line]. Available: http://bit.ly/2MWrh6C

C. Chang, “Fuzzy topological spaces”, Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182–190, Oct. 1968, doi: 10.1016/0022-247X(68)90057-7.

A. Dutta and B.Tripathy, “On fuzzy b-θ open sets in fuzzy topological space”, Journal of Intelligent & Fuzzy Systems, vol. 32, no. 1, pp. 137–139, Jan. 2017, doi: 10.3233/JIFS-151233.

P. Pao-Ming and L. Ying-Ming, “Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence”, Journal of Mathematical Analysis and Applications, vol. 76, no. 2, pp. 571–599, Aug. 1980, doi: 10.1016/0022-247X(80)90048-7.

Z. Salleh and N. Abdul Wahab, “θ-semi-generalized closed sets in fuzzy topological spaces”, Bulletin of the Malaysian Mathematical Sciences Society, vol. 36, no. 4, pp. 1151-1164, 2013. [On line]. Available: http://bit.ly/31BBNEx

L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.

Publicado
2019-08-14
Cómo citar
[1]
D. Sarma y S. Acharjee, «Fuzzy (b, θ)-separation axiom»s, Proyecciones (Antofagasta, En línea), vol. 38, n.º 3, pp. 617-624, ago. 2019.
Sección
Artículos