Odd harmonious labeling of grid graphs

Resumen

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f* : E(G) → {1, 3, · · · , 2q − 1} defined by f∗ (uv) = f (u) + f (v) is a bijection. In this paper we prove that path union of t copies of Pm×Pn, path union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, vertex union of t copies of Pm×Pn, vertex union of t different copies of Pmᵢ×Pnᵢ where 1 ≤ i ≤ t, one point union of path of Ptn (t.n.Pm×Pm), t super subdivision of grid graph Pm×Pn are odd harmonious graphs.

Biografía del autor

P. Jeyanthi, Govindammal Aditanar College for Women.
Department of Mathematics. Research Centre.
S. Philo, Manonmaniam Sundaranar University.
Research Scholar.
Maged Z. Youssef, Imam Mohammad Ibn Saud Islamic University.
Department of Mathematics and Statistics, College of Science.

Citas

J. Gallian, “A Dynamic Survey of Graph Labeling”, 20th ed. The Electronics Journal of Combinatorics, vol. # DS6, p. 432, 2007. [On line]. Available: http://bit.ly/33bdu1B

R. Graham and N. Sloane, “On Additive Bases and Harmonious Graphs”, SIAM Journal on Algebraic Discrete Methods, vol. 1, no. 4, pp. 382–404, 1980, doi: 10.1137/0601045.

F. Harary, Graph theory. Reading, MA: Addison-Wesley, 1972.

Z. Liang and Z. Bai, “On the odd harmonious graphs with applications”, Journal of Applied Mathematics and Computing, vol. 29, no. 1-2, pp. 105–116, Oct. 2008, doi: 10.1007/s12190-008-0101-0.

P. Jeyanthi, S. Philo and K. Sugeng, “Odd harmonious labeling of some new families of graphs”, SUT Journal of Mathematics, vol. 51, no. 2, pp. 53-65, 2015. [On lime]. Available: http://bit.ly/2T0pQoR

P. Jeyanthi and S. Philo, “Odd harmonious labeling of some cycle related graphs”, Proyecciones (Antofagasta), vol. 35, no. 1, pp. 85–98, Mar. 2016, doi: 10.4067/S0716-09172016000100006.

P. Jeyanthi and S. Philo, “Odd Harmonious Labeling of Plus Graphs”, Bulletin of the International Mathematical Virtual Institute , vol. 7, no. 3, pp. 515-526, Apr. 2017. [On line]. Available: http://bit.ly/2TceXAt

P. Jeyanthi, S. Philo, and M. K. Siddiqui, “Odd harmonious labeling of super subdivisión graphs”, Proyecciones (Antofagasta), vol. 38, no. 1, pp. 1–11, Feb. 2019, doi: 10.4067/S0716-09172019000100001.

P. Jeyanthi and S. Philo, “Odd Harmonious Labeling of Some New Graphs”, Southeast Asian Bulletin of Mathematics, vol. 43, no. 4, pp. 509-523, 2019. [On line] Available: http://bit.ly/31spYAw

P. Jeyanthi and S. Philo, "Odd Harmonious Labeling of Subdivided Shell Graphs", International Journal of Computer Sciences and Engineering, vol. 7, no. 5 (Special), pp. 77-80, Mar. 201, doi: 10.26438/ijcse/v7si5.7780.

P. Jeyanthi and S. Philo, “Odd Harmonious Labeling of Certain Graphs”, Journal of Applied Science and Computations, vol. 6, no.4, pp. 1224-1232, Apr. 2019. [On line]. Available: http://bit.ly/2Knk1Ok

P. Jeyanthi and S. Philo, “Some Results on Odd Harmonious Labeling”, Bulletin of the International Mathematical Virtual Institute, vol. 9, no. 3 pp. 567-576, May 2019. [On line]. Available: http://bit.ly/2T0sB9H

P. Selvaraju, P. Balaganesan and J. Renuka, “Odd Harmonious Labeling of Some Path Related Graphs”, International J. of Math. Sci. & Engg. Appls, vol. 7 no. 3, pp. 163-170, May 2013.

S. Vaidya and N. Shah, “Some New Odd Harmonious Graphs”, International Journal of Mathematics and Soft Computing, vol. 1, no. 1 pp. 9-16, 2011. [On line]. Available: http://bit.ly/2T6Us83

S. Vaidya and N. Shah, “Odd Harmonious Labeling of Some Graphs”, International Journal of Mathematical Combinatorics, vol. 3, pp. 105-112, Sep. 2012. [On line]. Available: http://bit.ly/2KkEcwo

Publicado
2019-08-06
Cómo citar
[1]
P. Jeyanthi, S. Philo, y M. Youssef, Odd harmonious labeling of grid graphs, Proyecciones (Antofagasta, En línea), vol. 38, n.º 3, pp. 411-428, ago. 2019.
Sección
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>