On the uniform ergodic theorem in invariant subspaces.

  • Abdelaziz Tajmouati Sidi Mohamed Ben Abdellah University. https://orcid.org/0000-0003-1572-1241
  • Abdeslam El Bakkali Chouaib Doukkali University.
  • Fatih Barki Sidi Mohamed Ben Abdellah University.

Resumen

Let T be a bounded linear operator on a Banach space X into itself. In this paper, we study the uniform ergodicity of the operator T|Y when Y is a closed subspace invariant under T. We show that if T satisfies, lim n → ∞ ‖ T n ‖ n = 0 , then T is uniformly ergodic on X if and only if the restriction of T to some closed subspace Y ⊂ X, invariant under T and R[(I − T)k] ⊂ Y for some integer k ≥ 1, is uniformly ergodic. Consequently, we obtain other equivalent conditions concerning the theorem of Mbekhta and Zemànek [9], theorem 1), also to the theorem of the Gelfand-Hille type.  

Biografía del autor

Abdelaziz Tajmouati, Sidi Mohamed Ben Abdellah University.
Faculty of Sciences Dhar El Mahraz.
Abdeslam El Bakkali, Chouaib Doukkali University.
Faculty of Sciences.
Fatih Barki, Sidi Mohamed Ben Abdellah University.
Faculty of Sciences Dhar El Mahraz.

Citas

P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer. Acad. Press, (2004).

M. Becker, A condition equivalent to uniform ergodicity, Studia Math., 167, pp. 215-218, (2005).

S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, (1974).

N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc.54 , pp. 185-217, (1943).

S. Grabiner and J. Zemànek, Ascent, descent, and ergodic properties of linear operators, J. Operator Theory, 48 (2002), 69-81.

J. J. Koliha, Convergent and stable operators and their generalizations, J. Math. Anal. Appl., 43, pp.778-794, (1993).

U. Krengel, Ergodic Theorems, Walter de Gruyter Studies in Mathematics 6, Walter de Gruyter, Berlin-New York, (1985).

M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc., 43, pp. 337-340, (1974).

M. Mbekhta and J. Zemànek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris sèrie I Math., 317, pp. 1155-1158, (1993).

L. Suciu and J. Zemànek, Growth conditions on Cesàro means of higher order, Acta Sci. Math. (Szeged), 79, pp. 545-581, (2013).

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, (1980).

K. Yosida, Mean ergodic theorem in Banach space, Proc. Imp. Acad. Tokyo 14, pp. 292-294, (1938).

J. Zemànek, On the Gelfand-Hille theorems, in Functional Analysis and Operator Theory, Banach Center Publ., vol. 30, Polish Acad. Sci., Warszawa, pp. 369-385, (1994).

Publicado
2019-05-31
Cómo citar
[1]
A. Tajmouati, A. El Bakkali, y F. Barki, «On the uniform ergodic theorem in invariant subspaces»., PJM, vol. 38, n.º 2, pp. 315-324, may 2019.
Sección
Artículos