On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function.

Resumen

We define the concept of rough limit set of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein-Stancu polynomials of fuzzy numbers. Finally, we investigate some properties of the rough limit set of Bernstein-Stancu polynomials.

Biografía del autor

M. Jeyaram Bharathi, Hindustan Institute of Technology and Science.
Department of Mathematics.
S. Velmurugan, Hindustan Institute of Technology and Science.
Department of Mathematics.
A. Esi, Adiyaman University.
Department of Mathematics.
N. Subramanian, SASTRA University.
Department of Mathematics.

Citas

S. Aytar , Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29 (3-4), (2008), pp. 291-303, (2008).

S. Aytar , The rough limit set and the core of a real sequence , Numer. Funct. Anal. Optimiz , 29 (3-4), pp. 283-290, (2008).

A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1 (2), pp. 16-25, (2014).

A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2 (1), pp. 6-10, (2014).

A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. and Inf. Sci., 9 (5), pp. 2529-2534, (2015).

A. Esi , S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl. Math. and Inf. Sci. , 10 (6), pp. 2083-2086, (2016).

A. Esi , S. Araci and Ayten Esi, λ-Statistical Convergence of Bernstein polynomial sequences, Advances and Applications in Mathematical Sciences, 16 (3) , (2017), 113-119.

A. Esi , N. Subramanian andAyten Esi , On triple sequence space of Bernstein operator of rough I− convergence Pre-Cauchy sequences, Proyecciones Journal of Mathematics, 36 (4), pp. 567-587, (2017).

A. J. Datta A. Esi and B. C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, Journal of Mathematical Analysis, 4(2), pp. 16-22, (2013).

S. Debnath, B. Sarma and B. C. Das, Some generalized triple sequence spaces of real numbers, Journal of Nonlinear Analysis and Optimization, Vol. 6, No. 1, pp. 71-79, (2015).

E. Dündar, C. Cakan, Rough I− convergence , Demonstratio Mathematica, Accepted.

H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz, 22, pp. 199-222, (2001).

H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23, pp. 139-146, (2002).

H. X. Phu , Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz , 24, pp. 285-301, (2003).

A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 No. (2), pp. 49-55, (2007).

A. Sahiner , B.C. Tripathy , Some I related properties of triple sequences, Selcuk J. Appl. Math. , 9 No. (2), pp. 9-18, (2008).

N. Subramanian andA. Esi , The generalized tripled difference of χ3 sequence spaces, Global Journal of Mathematical Analysis, 3 (2), pp. 54-60, (2015).

Publicado
2018-11-22
Cómo citar
Bharathi, M., Velmurugan, S., Esi, A., & Subramanian, N. (2018). On rough convergence of triple sequence spaces of Bernstein-Stancu operators of fuzzy numbers defined by a metric function. Proyecciones. Revista De Matemática, 37(4), 713-730. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3276
Sección
Artículos