On some double sequence spaces of interval number

Resumen

Esi and Yasemin defined the metric spaces  , ,  , and  lp(f, p, s) of sequences of interval numbers by a modulus function. In this study, we consider a generalization for double sequences of these metric spaces by taking a ψ function, satisfying the following conditions, instead of s parameter. For this aim, let ψ(k, l) be a positive function for all k, l ∈ N such that (i)  (ii)  or ψ(k, l) = 1. Therefore, according to class of functions which satisfying the conditions (i) and (ii) we deal with the metric spaces   and  of double sequences of interval numbers defined by a modulus function.

Biografía del autor

Sibel Yasemin Gölbol, Mersin University.
Departamento de Matemáticas.
Ayhan Esi, Adiyaman University.
Departmento de Matemáticas.
Uğur Değer, Mersin University.
Departamento de Matemáticas.

Citas

[1] Chiao,K. P., Fundamental properties of interval vector max-norm, Tamsui Oxford Journal of Mathematics. 18, (2), pp. 219-233, (2002).
[2] Dwyer, P. S., Linear Computation, Wiley, New York, 1951.
[3] Dwyer, P. S., Error of matrix computation, simultaneous equations and eigenvalues, National Bureu of Standarts, Applied Mathematics Series. 29, pp. 49-58, (1953).
[4] Esi, A., Strongly almost λ-convergence of interval numbers, Scientia Magna, 7 (2), pp. 117-122, (2011).
[5] Esi, A., Lacunary sequence spaces of interval numbers, Thai Journal of Mathematics, 10 (2), pp. 445-451, (2012).
[6] Esi, A., λ sequence spaces of interval numbers, Appl. Math. Inf. Sci, 8, (3), pp. 1099-1102, (2014).
[7] Esi, A., A new class of interval numbers, Journal of QafQaz University, Mathematics and Computer Sciences, pp. 98-102, (2012).
[8] Esi, A., Double lacunary sequence spaces of double sequence of interval numbers, Proyecciones Journal of Mathematics. 31, (1), pp. 297-306, (2012).
[9] Esi, A. and Yasemin, S., Some spaces of sequences of interval numbers defined by a modulus function, Global Journal of Mathematical Analysis, 2, (1), pp. 11-16, (2014).
[10] Esi, A., A new class of double interval numbers, Scientia Magna, 4(7), pp. 23-28, (2011).
[11] Esi, A., Statistical and lacunary statistical convergence of interval numbers in topological groups, Acta Scientarium. Techno., 36 (3), pp. 491- 495, (2014).
[12] Esi, A. and Hazarika, B., Some double sequence spaces of interval numbers defined by Orlicz function, Journal of the Egyptian Mathematical Society, 22, (3), pp. 424-427, (2014).
[13] Esi, A and Esi, A., Asymptotically lacunary statistically equivalent sequences of interval numbers, Int. J. Math. Appl., 1 (1), pp. 43-48, (2013).
[14] Esi, A. and Braha, N., On asymptotically λ-statistical equivalent sequences of interval numbers, Acta Scientarium. Techno., 35 (3), pp. 515-520, (2013).
[15] Esi, A., Strongly λ-Summable Sequences of interval numbers, International Journal of Science, Environment and Technology, 5 (6), pp. 4643-4648, (2016).
[16] Esi, A. and Catalbas, N., Some sequence spaces of interval numbers defined by Orlicz functions, Proceedings of the Jangjeon Mathematical Society, 20 (1), pp. 35-41, (2017).
[17] Fischer, P. C., Automatic propagated and round-off error analysis, paper presented at the 13th National Meeting of the Association of Computing Machinary, June (1958).
[18] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math., Oxford Ser. 18, (2), pp. 345—355, (1967).
[19] Markov, S., Quasilinear spaces and their relation to vector spaces, Electronic Journal on Mathematics of Computation, 2, (1), (2005).
[20] Moore, R. E., Automatic Error Analysis in Digital Computation, LSMD-48421, Lockheed Missiles and Space Company, (1959).
[21] Moore, R. E. and Yang, C. T., Theory of an Interval Algebra and Its Application to Numeric Analysis, RAAG Memories II, Gaukutsu Bunken Fukeyu-kai, Tokyo, (1958).
[22] Moore, R. E. and Yang, C. T., Interval Analysis I, LMSD-285875, Lockheed Missiles and Space Company, (1962).
[23] Pringsheim, A., Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53, pp. 289—321, (1900).
[24] Şengönül, M. and Eryılmaz, A., On the sequence spaces of interval numbers, Thai Journal of Mathematics. 8, (3), pp. 503—510, (2010)
Publicado
2018-09-25
Cómo citar
Gölbol, S., Esi, A., & Değer, U. (2018). On some double sequence spaces of interval number. Proyecciones. Journal of Mathematics, 37(3), 535-546. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3169
Sección
Artículos