The t-pebbling number of Lamp graphs

Resumen

Let G be a graph and some pebbles are distributed on its vertices. A pebbling move (step) consists of removing two pebbles from one vertex, throwing one pebble away, and moving the other pebble to an adjacent vertex. The t-pebbling number of a graph G is the least integer m such that from any distribution of m pebbles on the vertices of G, we can move t pebbles to any specified vertex by a sequence of pebbling moves. In this paper, we determine the t-pebbling number of Lamp graphs.

Biografía del autor

A. Lourdusamy, St. Xavier’s College (Autonomous).
Departmento de Matemáticas.
F. Patrick, St. Xavier's College (Autonomous).
Departmento de Matemáticas.
T. Mathivanan, St. Xavier's College (Autonomous).
Departmento de Matemáticas.

Citas

[1] F. R. K. Chung, Pebbling in hypercubes, SIAM J. Disc. Math., 2(4), pp. 467-472, (1989).
[2] P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen, 4, pp. 201-206, (1956).
[3] P. Erdös, A. Ginzburg and A. Ziv, A theorem in additive number theory, Bull. Res. Council Israel, 10F, pp. 41-43, (1961).
[4] D. Kleitman and P. Lemke, An addition theorem on the integers modulon, J. Number Theory, 31, pp. 335-345, (1989).
[5] A. Lourdusamy and T. Mathivanan, The t-pebbling number of Jahangir graph J3,m, Proyecciones Journal of Mathematics, 34(2), pp. 161-174, (2015).
[6] A. Lourdusamy and T. Mathivanan, The t-pebbling number of squares of cycles, Journal of Prime Research in Mathematics, 11, pp. 61-76, (2015).
[7] A. Lourdusamy, C. Muthulakshmi @ Sasikala and T. Mathivanan, The pebbling number of the square of an odd cycle, Sciencia Acta Xaveriana, 3 (2), pp. 21-38, (2012).
[8] A. Lourdusamy, F. Patrick and T. Mathivanan, The t-pebbling number of some wheel related graphs, Journal of Prime Research in Mathematics, 12, pp. 35-44, (2016).
[9] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, On pebbling Jahangir graph, General Mathematics Notes, 5(2), pp. 42-49, (2011).
[10] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, Pebbling number for Jahangir graph J2,m (3 ≤ m ≤ 7), Sciencia Acta Xaveriana, 3(1), pp. 87-106, (2012).
[11] A. Lourdusamy, S. Samuel Jayaseelan and T. Mathivanan, The tpebbling number of Jahangir graph, International Journal of Mathematical Combinatorics, 1, pp. 92-95, (2012).
[12] L. Pachter, H.S. Snevily and B. Voxman, On pebbling graphs, Congressus Numerantium, 107, pp. 65-80, (1995).
Publicado
2018-09-25
Cómo citar
Lourdusamy, A., Patrick, F., & Mathivanan, T. (2018). The t-pebbling number of Lamp graphs. Proyecciones. Journal of Mathematics, 37(3), 503-517. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3167
Sección
Artículos