On multiset group.

Resumen

The concept of multiset is a generalization of Cantor set. In this paper we have attempted to generalize the concept of group in the multiset context and define multiset subgroup and studied some of their basic properties.

Biografía del autor

Binod Chandra Tripathy, Tripura University.
Departmento de Matemáticas.
Shyamal Debnath, Tripura University.
Departmento de Matemáticas.
Debjani Rakshit, Tripura University.
Departmento de Matemáticas.

Citas

Blizard W D., Multiset Theory, Notre Dame Jour. logic, 31, pp. 36-65, (1989).

Blizard W. D., The development of multiset theory, Modern Logic, 1(4), pp. 319-352, (1991).

Cerf V., Fernandez E., Gostelow K. and Volausky S., Formal control and low properties of a model of computation, Report ENG 7178, Computer Science Department, University of California, Los Angeles, CA, December, pp. 81, (1971).

Girish K. P. and John S. J. Relations and functions in multiset context, Inf. Sci., 179, pp. 758-768, (2009).

Knuth D. E. The Art of computer programming, Vol. 2 (Seminumerical Algorithms), 2nd ed. Addison-Wesley, (1981), Reading Mass.

Nazmul S. K., Majumdar P. and Samanta S. K., On multisets and multigroups, Anals Fuzzy Math. Inf., 6 (3), pp. 643-656, (2013).

Peterson J. Computation sequence sets, Jour. Computer Syst. Sci., 13 (1), pp. 1-24, (1976).

Shravan K. and Tripathy B. C., Generalised closed Sets in multiset topological space, Proyecciones Jour. Math. Vol. 37, 2, pp. 223-237, (2018).

Tella Y. and Daniel S., A Study of Group Theory in the Context of Multiset Theory. Internat. Jour. Sci. Tech., 2 (8), pp. 609-615, (2013).

Yager R. R. On the theory of bags. Internat. Jour. Gen. Syst., 13, pp. 23-37, (1986).

Publicado
2018-09-24
Cómo citar
Tripathy, B., Debnath, S., & Rakshit, D. (2018). On multiset group. Proyecciones. Revista De Matemática, 37(3), 479-489. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3164
Sección
Artículos

Artículos más leídos del mismo autor/a