Properly efficient solutions to non-differentiable multiobjective optimization problems.

Resumen

In this work sufficient conditions are established to ensure that all feasible points are (properly) efficient solutions in non trivial situations, for a class of non-differentiable, non-convex multiobjective minimization problems. Considering locally Lipschitz functions and some results of non-differentiable analysis introduced by F. H. Clarke.

Biografía del autor

L. Batista dos Santos, Universidade Federal do Paraná.
Departamento de Matemática. Centro Politécnico.
M. A. Rojas-Medar, Universidad de Tarapacá.
Instituto de Alta Investigación.
V. Vivanco-Orellana, Universidad Católica de la Santísima Concepción.
Facultad de Ingeniería. Departamento de Matemática y Física Aplicadas.

Citas

V. Chankong, Y. Haimes: Multiobjective decision making: theory and methodology. North-Holland, New York, (1983).

F. H. Clarke,Optimization and nonsmooth analysis, SIAM, Philadelphia, (1990).

A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22, pp. 618-630, (1968).

M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, pp. 545-550, (1981).

V. Pareto, Cours dEconomie Politique, Rouge, (1886). ´

T. D. Phuong, P. H. Sach, N. D. Yen, Strict lower semicontinuity of the level sets and invexity of a locally Lipschitz function, J. Optim. Th. Appl. 87, pp. 579-594, (1995).

A. Siposová, A note on global Pareto optimality in multicriteria optimization problems, Nonlinear Analysis 69, pp. 1321-1324, (2008).

Publicado
2018-09-24
Cómo citar
Batista dos Santos, L., Rojas-Medar, M., & Vivanco-Orellana, V. (2018). Properly efficient solutions to non-differentiable multiobjective optimization problems. Proyecciones. Revista De Matemática, 37(3), 429-438. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/3162
Sección
Artículos