Riemann-Liouville fractional trapezium-like inequalities via generalized (m, h₁, h₂)-preinvexity

Resumen

In this paper, we derive a fractional integral identity concerning three times differentiable generalized preinvex mappings defined on minvex set. By using of this identity, we obtain new estimates on generalization of trapezium-like inequalities for functions whose third order derivatives are generalized (m, h₁, h₂)-preinvex via Riemann-Liouville fractional integrals. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.

Biografía del autor

Piao Guo, China Three Gorges University.
Departamento de Matemáticas, Facultad de Ciencias.
Zhengzheng Huang, China Three Gorges University.
Departamento de Matemáticas, Facultad de Ciencias.
Tingsong Du, China Three Gorges University.
Departamento de Matemáticas, Facultad de Ciencias.

Citas

[1] G. A. Anastassiou, Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)—convexity, Facta Univ. Ser. Math. Inform., 28, No. 2, pp. 107-126, (2013).

[2] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Two point trapezoidal like inequalities involving hypergeometric functions, Filomat, 31, No. 8, pp. 2281-2292, (2017).

[3] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Fractional Hermite-Hadamard inequalities for differentiable s-Godunova-Levin functions, Filomat, 30, No. 12, pp. 3235-3241, (2016).

[4] F. X. Chen, Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals, J. Math. Inequal., 10, No. 1, 75-81, (2016).

[5] F. X. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268, pp. 121-128, (2015).

[6] S. S. Dragomir, M. I. Bhatti, M. Iqbal, M. Muddassar, Some new Hermite-Hadamard’s type fractional integral inequalities, J. Comput. Anal. Appl., 18, No. 4, pp. 655-661, (2015).

[7] T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9, pp. 3112-3126, (2016).

[8] T. S. Du, J. G. Liao, L. Z. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016, Article No. 306, 24 pages, (2016).

[9] T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293, pp. 358-369, (2017).

[10] S.-R. Hwang, S.-Y. Yeh, K.-L. Tseng, Refinements and similar extensions of Hermite-Hadamard inequality for fractional integrals and their applications, Appl. Math. Comput., 249, pp. 103-113, (2014).

[11] S.-R. Hwang, K.-L. Tseng, K.-C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math., 40, pp. 471-486, (2016).

[12] M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52, No. 3, pp. 707-716, (2015).

[13] İ. İşcan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl., Article No. 491, 15 pages, (2013).

[14] İ. İşcan, S. H. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238, pp. 237-244, (2014).

[15] A. Kashuri, R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm-preinvex functions, Proyecciones (Antofagasta), 36, No. 1, pp. 45-80, (2017).

[16] M. A. Latif, On some new inequalities of Hermite-Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value, Ukrainian Math. J., 67, No. 10, pp. 1552-1571, (2016).

[17] M. A. Latif, S. S. Dragomir, E. Momoniat, On Hermite-Hadamard type integral inequalities for n-times differentiable m- and (α; m)- logarithmically convex functions, Filomat, 30, No. 11, pp. 3101-3114, (2016).

[18] M. A. Latif, S. S. Dragomir, Generalization of Hermite-Hadamard type inequalities for n-times differentiable functions through preinvexity, Georgian Math. J., 23, No.1, pp. 97-104, (2016).

[19] Y. J. Li, T. S. Du, B. Yu, Some new integral inequalities of Hadamard-Simpson type for extended (s, m)-preinvex functions, Ital. J. Pure Appl. Math., 36, pp. 583-600, (2016).

[20] Y. M. Liao, J. H. Deng, J. R. Wang, Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically s-convex functions, J. Inequal. Appl., 2013, Article No. 517, 13 pages, (2013).

[21] M. Matłoka, Inequalities for h-preinvex functions, Appl. Math. Comput., 234, pp. 52-57, (2014).

[22] M. Matłoka, Some inequalities of Hadamard type for mappings whose second derivatives are h-convex via fractional integrals, J. Fract. Calc. Appl., 6, No. 1, pp. 110-119, (2015).

[23] M. A. Noor, K. I. Noor, M. U. Awan, New fractional estimates of Hermite-Hadamard inequalities and applications to means, Stud. Univ. Babe¸ s-Bolyai Math., 61, No. 1, pp. 3-15, (2016).
[24] M. A. Noor, K. I. Noor, M. U. Awan, Fractional Hermite-Hadmard inequalities for convex functions and applications, Tbilisi Math. J., 8, No. 2, pp. 103-113, (2015).

[25] M. A. Noor, K. I. Noor, M. V. Mihai, M. U. Awan, Fractional HermiteHadamard inequalities for some classes of differentiable preinvex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 78, No. 3, pp. 163-174, (2016).

[26] O. Omotoyinbo, A. Mogbademu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1, No. 1, pp. 001-012, (2014).

[27] M. E. Özdemir, S. S. Dragomir, Ǹ . Yildiz, The Hadamard inequality for convex function via fractional integrals, Acta Math. Sci. Ser. B Engl. Ed., 33B, No. 5, pp. 1293-1299, (2013).

[28] M. E. Özdemir, A. Ekinci, Generalized integral inequalities for convex functions, Math. Inequal. Appl., 19, No. 4, pp. 1429-1439, (2016).

[29] C. Peng, C. Zhou, T. S. Du, Riemann-Liouville fractional Simpson’s inequalities through generalized (m, h₁, h₂)-preinvexity, Ital. J. Pure Appl. Math., 38, pp. 345-367, (2017).

[30] S. Qaisar, M. Iqbal, and M. Muddassar, New Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals, J. Comput. Anal. Appl., 20, No. 7, pp. 1318-1328, (2016).

[31] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba¸ sak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, pp. 2403-2407, (2013).

[32] M. Z. Sarikaya, H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30, No. 5, pp. 1315-1326, (2016).

[33] M. Tunç, E. Göv, Ü. Şanal, On tgs-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30, No. 5, pp. 679-691, (2015).

[34] J. R. Wang, X. Z. Li, M. Fečkan, Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92, No. 11, pp. 2241-2253, (2013).

[35] J. Wang, J. Deng, M. Fečkan, Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville frantional integrals, Ukrainian Math. J., 65, No. 2, pp. 193-211, (2013).
[36] T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136, pp. 29-38, (1988).

[37] S.-H. Wu, B. Sroysang, J.-S. Xie, and Y.-M. Chu, Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex, SpringerPlus, 4, Article No. 831, 9 pages, (2015).

[38] B. -Y. Xi, F. Qi, Hermite-Hadamard type inequalities for geometrically r-convex functions, Studia Sci. Math. Hungar., 51, No. 4, pp. 530-546, (2014).

[39] B. Y. Xi, S. H. Wang, and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are P -convex, Applied Mathematics, 3, pp. 1898-1902, (2012).

[40] Y. R. Zhang, J. R. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., Article No. 220, 27 pages, (2013).
Publicado
2018-06-06
Cómo citar
Guo, P., Huang, Z., & Du, T. (2018). Riemann-Liouville fractional trapezium-like inequalities via generalized (m, h₁, h₂)-preinvexity. Proyecciones. Journal of Mathematics, 37(2), 345-378. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2926
Sección
Artículos