On velocity bimagnetic biharmonic particles with energy on Heisenberg space

  • Talat Körpinar Muş Alparslan University.


In this work, we consider velocity bimagnetic biharmonic particle on 3D Heisenberg space in the magnetic field B and we give the concept of energy. Moreover, we characterize energy conditions of velocity bimagnetic biharmonic particles with Frenet vector field. Therefore, we obtain energy results for bimagnetic particles by Frenet fields in the Heisenberg space.

Biografía del autor/a

Talat Körpinar, Muş Alparslan University.
Departamento de Matemáticas.


[1] A. Comtet, On the Landau Hall levels on the hyperbolic plane. Annals of Phys. 173, pp. 185-209, (1987).

[2] S. L. Druta-Romaniuc, M. I. Munteanu, Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal.:Real Word Application. 14 (1), pp. 383-396, (2013).

[3] D. I. Efimov, The magnetic geodesic flows on a homogenous sympletic manifold. Siberian Math. J. 46 (1), pp. 83-93, (2005).

[4] M. I. Munteanu, A. I. Nistor, The classification of Killing magnetic curves in S² × R. J. Geom. Phys. 62 (2), pp. 170-182, (2012).

[5] S. P. Novikov, The Hamiltonian formalism and a many valued analogue of Morse theory. Russian Math. Surveys 37 (5), pp. 1-56, (1982).

[6] T. Sunada, Magnetic flows on a Riemann surface. Proc. KAIST Math. Workshop, pp. 93-108, (1993).

[7] T. Adachi, Kahler magnetic flow for a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18 (2), pp. 473-483, (1995).

[8] T. Adachi, Kahler magnetic on a complex projective space. Proc. Japan Acad. Ser. A: Math Sci. 70, pp. 12-13, (1994).

[9] J. L. Cabrerizo, M. Fernandez, J. S. Gomez, On the existence of almost contact structure and the contact magnetic field. Acta Math. Hung. 125 (1-2), pp. 191-199, (2009).

[10] M. Barros, J. L. Cabrerizo, M. Fernandez, A. Romero, Magnetic vortex filament flows. Journal of Math. Phys. 48 (8), (2007), 082904.

[11] J. L. Cabrerizo, Magnetic fields in 2D and 3D sphere. Journal of Nonlinear MAth. Phys. 20 (3), pp. 440-450, (2013).

[12] Z. Bozkurt, I. Gök, Y. Yaylı, F.N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds. Journal of Math. Phys. 55 (2014), 053501.

[13] E. Honig, E. L. Schucking, C. V. Vishveshwara, Motion of charged particles in omogenous electromagnetic fields. Journal of Math. Phys. 15, (1974), doi: 10.1063/1.1666728.

[14] A. Coronel-Escamilla, J. F. Gomez-Angular, E. Alvarado-Mendez, G.V. Guerrero-Ramirez, R. F. Escobar-Jimenez, Fractioanl Dynamics of charged particles in magnetic fields. Int. Journal of Modern Phys. C, 27 (6), (2016).

[15] Z. S. Körpınar, M. Tuz, T. Körpınar, New Electromagnetic Fluids Inextensible Flows of Spacelike Particles and some Wave Solutions in Minkowski Space-time, Int J Theor Phys 55 (1), pp. 8-16, (2016).

[16] T. Körpınar, A New Method for Inextensible Flows of Timelike Curves in Minkowski Space-Time E⁴₁, International Journal of Partial Differential Equations, Volume 2014, Article ID 517070, 7 pages.

[17] T. Körpınar, Bianchi Type-I Cosmological Models for Inextensible Flows of Biharmonic Particles by Using Curvature Tensor Field in Spacetime, Int J Theor Phys 54, pp. 1762-1770, (2015).

[18] T. Körpınar, On the Fermi-Walker Derivative for Inextensible Flows, Zeitschrift für Naturforschung A. 70 (7), pp. 477-482, (2015)

[19] T. Körpınar, B-tubular surfaces in Lorentzian Heisenberg Group H3, Acta Scientiarum. Technology 37 (1), pp. 63-69, (2015).

[20] T. Körpınar, New Characterization for Minimizing Energy of Biharmonic Particles in Heisenberg Spacetime, Int J Phys. 53, pp. 3208-3218, (2014).

[21] A. Kazan and H.B. Karadağ, 2-Magnetic curves in Euclidean 3-space, Theoretical Mathematics & Applications, 7 (1), pp. 15-28, (2017).

[22] Z. S. Körpınar, M. Tuz, T. Körpınar, Bianchi Type-I Cosmological Models for Integral Representation Formula and some Solutions in Spacetime, Int J Theor Phys 54 (9), pp. 3195-3202, (2015).

[23] A. Gray, E. Abbena, S. Salamon, Modern Differential Geometry of curves and surfaces with Mathemtica. CRC Press, (1997).

[24] G. Y. Jiang: 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A 7, pp. 389-402, (1986).

[25] S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), pp. 295-302, (1992).

[26] C. M. Wood, On the Energy of a Unit Vector Field. Geom. Dedic. 64, pp. 19-330, (1997).

[27] A. Altin, On the energy and Pseduoangle of Frenet Vector Fields in Rnᵥ . Ukranian Mathematical J. 63 (6), pp. 969-975, (2011).
Cómo citar
Körpinar, T. (2018). On velocity bimagnetic biharmonic particles with energy on Heisenberg space. Proyecciones. Journal of Mathematics, 37(2), 379-387. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2925