Sequentially spaces and the finest locally K-convex of topologies having the same onvergent sequences

  • Abdelkhalek El Amrani Université Sidi Mohamed Ben Abdellah.

Resumen

The present paper is concerned with the concept of sequentially topologies in non-archimedean analysis. We give characterizations of such topologies.

Biografía del autor/a

Abdelkhalek El Amrani, Université Sidi Mohamed Ben Abdellah.
Department of mathematics and computer science, Faculty of Sciences Dhar El Mahraz.

Citas

[1] R. Ameziane Hassani and M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-archimédien, Proyecciones. Vol. 20, No. 2, pp. 217-241, (2001).

[2] J. R. Boone and F.Siwiec, Sequentially quotient mappings, Czechoslovak Mathematical Journal, Vol. 26, No. 2, pp. 174-182, (1976).

[3] J. Boos and T. Leiger, Duals pairs of sequence spaces, IJMMS 28, No.1, pp. 9-23, (2001).

[4] M. C. Cueva and C. T. Maia Vinagre, Sequences in non-archimedean locally convex spaces, Indian J. pure appl. Math., 25(9): pp. 955-962, (1994).

[5] N. De Grande-De Kimpe, Perfect locally K-convex sequence spaces, Indag. Math. (33), pp. 371-482, (1971).

[6] A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences: Advances and Applications 6, No. 2, pp. 193-214, (2010).

[7] A. El Amrani, R. Ameziane Hassani and M. Babahmed, Polar topologies in sequence spaces in non-archimedean analysis. Universidad Catolica del Norte Antofagasta-Chile. Proyecciones Journal of Mathematics 31, No. 2, pp. 103-123, (2012).

[8] J. R. Ferrer, I. Morales, L. M. Sanchez Ruiz, Sequential convergence in topological vector spaces, Topology and its applications 108, pp. 1-6, (2000).

[9] S. P. Franklin, Spaces in which sequences suffice,” Fundamenta Mathematicae 67, pp. 107-116, (1965).

[10] S. P. Franklin, ”Spaces of which sequences suffice, II,” Fund. Math. 61, pp. 51-56, (1967).

[11] A. Goreham, Sequential convergence in topological spaces, arXiv:math/0412558v2-[math.GN] 10 April, (2016).
[12] D.A. Gregory, Vector sequence spaces, Ph.D thesis, University of Machigan, (1967).

[13] A. K. Katsaras and V. Benekas, Sequential convergence in topological vector spaces, Georgian mathematical journal: Vol. 2, No. 2, pp. 151-164 , (1995).

[14] A. F. Monna, Analyse non- archimédienne, Springer-Verlag, band 56, (1970).

[15] W. H. Schikhof, Locally convex spaces over nonspherically complete valued field, I, II, Bull. Soc. Math. Belg. sér. B 38, pp. 187-224 (1986).

[16] H. H. Schaefer, Topological vector spaces, Springer-Verlag New-York, herdlberg Berlin, (1971).

[17] R. F. Snipes, T-sequential topological spaces, Fundamenta Mathematicae, T. LXXVII, pp. 95-98, (1970).

[18] J. Van-tiel, Espaces localement K-convexes, I-III. Proc. Kon. Ned. Akad. van Wetensch. A 68, pp. 249-289, (1965).

[19] M. Venkataramen, Directed sets in topology, Math. student 30, pp. 99-100, (1962).

[20] S. Warner, Topological Fields, North-Holland Mathematics studies 157, (1989).

[21] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64, pp. 341-364, (1968).
Publicado
2018-03-15
Cómo citar
El Amrani, A. (2018). Sequentially spaces and the finest locally K-convex of topologies having the same onvergent sequences. Proyecciones. Journal of Mathematics, 37(1), 153-169. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2786
Sección
Artículos