Some new Ostrowski type fractional integral inequalities for generalized (s,m, φ)-preinvex functions via Caputo k-fractional derivatives

Artion Kashuri, Rozana Liko

Resumen


In the present paper, the notion of generalized (s, m, φ)-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo k-fractional derivatives. At the end, some applications to special means are given.

Palabras clave


Ostrowski’ type inequality; Hölder's inequality; power mean inequality; s-;convex function in the second sense, m-invex.

Texto completo:

PDF

Referencias


Ç. Yildiz, M. E. Özdemir and M. Z. Sarikaya, New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J., 56, pp. 161-172, (2016).

A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, φ)-preinvex functions, Aust. J. Math. Anal. Appl., 13, (1), Article 16, pp. 1-11, (2016).

A. Kashuri and R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm-preinvex functions, Proyecciones, 36, (1), pp. 45-80, (2017).

M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23, pp. 1071-1076, (2010).

R. P. Agarwal, M. J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 204, pp. 5-27, (2016).

S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., 1, (2) (1998).

S. S. Dragomir, The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, pp. 33-37, (1999).

S. S. Dragomir, Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14, (1), pp. 1-287, (2017).

G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14, (1), pp. 64-68, (2017).

W. Liu, W. Wen and J. Park, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16, (1), pp. 249-256, (2015).

M. Matloka, Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, Journal of Scientific Research and Reports, 3, (12), pp. 1633-1641, (2014).

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier, New York-London, (2006).

G. Farid, A. Javed and A. U. Rehman, On Hadamard inequalities for ntimes differentiable functions which are relative convex via Caputo k-fractional derivatives, Nonlinear Anal. Forum, to appear.

Z. Liu, Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53, pp. 73-79, (2007).

M. E. Özdemir, H. Kavurmac and E. Set, Ostrowski’s type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50, pp. 371-378, (2010).

B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249, pp. 583-591, (2000).

B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32, (1), pp. 45-49, (2001).

A. Rafiq, N. A. Mir and F. Ahmad, Weighted Čebyšev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28, (7), pp. 901-906, (2007).

N. Ujević, Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48, pp. 145-151, (2004)

L. Zhongxue, On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56, pp. 2043-2047, (2008).

T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279, pp. 57-66, (2015).

Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9, (4), pp. 493-497, (2010).

Z. Dahmani, L. Tabharit and S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1, (2), pp. 155-160, (2010).

Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1, (1), pp. 51-58, (2010).

Z. Dahmani, L. Tabharit and S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2, (3), pp. 93-99, (2010).

U. N. Katugampola, A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6, (4), pp. 1-15, (2014).

R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264, pp. 65-70, (2014).

S. D. Purohit and S. L. Kalla, Certain inequalities related to the Chebyshev’s functional involving Erdelyi-Kober operators, Scientia Series A: Math. Sci., 25, pp. 53-63, (2014).

R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21, (2), pp. 191-203, (2005).

M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79, (1), pp. 129-134, (2010).

E. Set, A. Gözpnar and J. Choi, Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci., 101, (4), pp. 873-891, (2017).

T. S. Du, J. G. Liao and Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9, pp. 3112-3126, (2016).

H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, pp. 100-111, (1994).

M. Ahmadmir and R. Ullah, Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math., 42, (4), pp. 415-426, (2011).

S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28, pp. 239-244, (1997).

S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13, (11), pp. 15-20, (1997).

Z. Liu, Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math, 10, (2), Art. 52, 12 pp.... (2009)

D. S. Mitrinovic, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, (1993).

T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, pp. 1473-1484, (2005).

X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, pp. 607-625, (2003).

R. Pini, Invexity and generalized convexity, Optimization, 22, pp. 513-525, (1991).

M. Tun¸ c, Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17, (4), pp. 691-696, (2014).

P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, (2003).


Enlaces refback

  • No hay ningún enlace refback.