Generalized Drazin-type spectra of Operator matrices

  • A. Tajmouati Sidi Mohamed Ben Abdellah University.
  • M. Abkari Sidi Mohamed Ben Abdellah University.
  • M. Karmouni Cadi Ayyad University.

Resumen

In this paper, we investigate the limit points set of surjective and approximate point spectra of upper triangular operator matrices . We prove that σ*(MC) ∪ W=σ*(A)∪ σ*(B) where W is the union of certain holes in σ*(MC), which happen to be subsets of σ lgD(B) ∩ σrgD(A), σ* ∈ {σlgD, σrgD}  are the limit points set of surjective and approximate point spectra. Furthermore, several sufficient conditions for σ* (MC) = σ* (A)∪σ* (B) holds for every C ∈ ℬ(Y,X) are given.

Biografía del autor

A. Tajmouati, Sidi Mohamed Ben Abdellah University.
Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications.
M. Abkari, Sidi Mohamed Ben Abdellah University.
Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications.
M. Karmouni, Cadi Ayyad University.
Multi-disciplinary Faculty of Safi.

Citas

[1] P. Aiena. Fredholm and Local Spectral Theory with Applications to Multipliers. Kluwer. Acad. Press, (2004).

[2] C. Benhida, E. H. Zerouali, H. Zguitti. Spectra of upper triangular operator matrices, Proc. Am. Math. Soc. Vol 133, Num 10, pp. 3013-3020, (2005).

[3] M. Houmidi, H. Zguitti, Propriétés spectrales locales d’une matrice carrée des opérateurs, Acta Math. Vietnam. 25, pp. 137-144, (2000).

[4] K. B.Laursen, M. M. Neumann. An introduction to Local Spectral Theory in: London Mathematical Society Monograph, New series, Vol. 20, Clarendon Press, Oxford, (2000).

[5] J. J. Koliha. A generalized Drazin inverse. Glasgow Math. J., 38 : pp. 367-81, (1996).

[6] H. Zariouh, H. Zguitti. On pseudo B-Weyl operators and generalized drazin invertible for operator matrices, Linear and Multilinear Algebra, Vol 64, Issue 7, pp. 1245-1257, (2016).

[7] E. H. Zerouali, H. Zguitti. Perturbation of spectra of operator matrices and local spectral theory, J. Math Anal Appl, 324: pp. 992-1005, (2006).

[8] S. Zhang, H.Zhong, L. Lin. Generalized Drazin Spectrum of Operator Matrices, Appl. Math. J. Chinese Univ. 29 (2), pp. 162-170, (2014).

[9] S. F. Zhang, H. J. Zhang, J. D. Wu. Spectra of upper-triangular operator matrices, Acta Math Sinica (in Chinese), 2011, 54: 41-60, (2011).
Publicado
2018-03-15
Cómo citar
Tajmouati, A., Abkari, M., & Karmouni, M. (2018). Generalized Drazin-type spectra of Operator matrices. Proyecciones. Journal of Mathematics, 37(1), 119-131. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2784
Sección
Artículos