Intuitionistic fuzzy n-normed algebra and continuous product

  • Nabanita Konwar North Eastern Regional Institute of Science and Tec.
  • Pradip Debnath North Eastern Regional Institute of Science and Tec.

Resumen

In this paper we extend the notion of intuitionistic fuzzy n-normed linear space (IFnNLS) to define an intuitionistic fuzzy n-normed algebra (IFnNA). We give a necessary and sufficient condition for an IFnNA to be with continuous product. Further, the concept of multiplicatively continuous product has been introduced and related results have been established. Illustrative examples have been provided in support of our results.

Biografía del autor

Nabanita Konwar, North Eastern Regional Institute of Science and Tec.
Department of Mathematics.
Pradip Debnath, North Eastern Regional Institute of Science and Tec.
Department of Mathematics.

Citas

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20, pp. 87—96, (1986).

[2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11, pp. 687—705, (2003).

[3] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11 (3), pp. 687—705, (2003).

[4] T. Binzar, F. Pater and S. Nabadan, On fuzzy normed algebras, J. Nonlinear Sci. Appl., 9, pp. 5488—5496, (2016).

[5] A. Bodaghi, C. Park and J. M. Rassias, Fundamental stabilities of the nonic functional equation in intuitionistic fuzzy normed spaces, Commun. Korean Math. Soc., 31(4), pp. 729—743, (2016).

[6] S. C. Cheng and J. N. Mordeson, Fuzzy linear operator and fuzzy normed linear space, Bull. Cal. Math. Soc., 86, pp. 429—436, (1994).

[7] P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (3), pp. 708—715, (2012).

[8] P. Debnath, Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces, J. Intell. Fuzzy Syst., 28 (3), pp. 1299—1306, (2015).

[9] P. Debnath, A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform., 12 (4), pp. 559—572, (2016).

[10] P. Debnath and M. Sen, Some completeness results in terms of infinite series and quotient spaces in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst., 26 (2), pp. 975—982, (2014).

[11] P. Debnath and M. Sen, Some results of calculus for functions having values in an intuitionistic fuzzy n-normed linear space, J. Intell. Fuzzy Syst., 26 (6), pp. 2983—2991, (2014).

[12] B. Dinda, S. K. Samanta and U. K. Bera, Intuitionistic fuzzy Banach algebra, Bull. Math. Anal. Appl., 3, pp. 273—281, (2010).

[13] A. Esi and B. Hazarika, λ-ideal convergence in intuitionistic fuzzy 2-normed linear space, J. Intell. Fuzzy Syst., 24, pp. 725—732, (2013).

[14] C. Felbin, Finite dimensional fuzzy normed linear spaces, Fuzzy Sets Syst., 48, pp. 239—248, (1992).

[15] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27, pp. 631—639, (2001).

[16] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12, pp. 215—229, (1984).

[17] A. K. Katsaras, Fuzzy topological vector spaces, Fuzzy Sets Syst., 12, pp. 143—154, (1984).

[18] N. Konwar and P. Debnath, Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst., 33(4), pp. 2363—2373, (2017).

[19] N. Konwar and P. Debnath, Some new contractive conditions and related fixed point theorems in intuitionistic fuzzy n-Banach spaces, J. Intell. Fuzzy Syst., DOI: 10.3233/JIFS-171372, (2017).

[20] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11, pp. 326—334, (1975).

[21] A. K. Mirmostafee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst., 195, pp. 109—177, (2012).

[22] M. Mursaleen, S. A. Mohiuddine and H. H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comp. Math. Apl., 59, pp. 603—611, (2010).

[23] S. Nadaban, Fuzzy Euclidean normed spaces for data mining applications, Int. J. Comput. Commun. Cotrol., 10, pp. 70—77, (2014).

[24] S. Nadaban and I. Dzitac, Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications, Informatica, 25(4), pp. 643—662, (2014).

[25] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons & Fractals, 27, pp. 331—344, (2006).

[26] M. Sen and P. Debnath, Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces, Math. Comput. Model., 54 (11), pp. 2978—2985, (2011).

[27] M. Sen and P. Debnath, Statistical convergence in intuitionistic fuzzy n-normed linear spaces, Fuzzy Inf. Eng., 3, pp. 259—273, (2011).

[28] S. Vijayabalaji and A. Narayanan, Fuzzy n-normed linear space, J. Math. Math. Sci., 24, pp. 3963—3977, (2005).

[29] S. Vijayabalaji, N. Thillaigovindan and Y. B. Jun, Intuitionistic fuzzy n-normed linear space, Bull. Korean. Math. Soc., 44, pp. 291—308, (2007).

[30] L. A. Zadeh, Fuzzy sets, Inform. Cont., 8, pp. 338—353, (1965).
Publicado
2018-03-15
Cómo citar
Konwar, N., & Debnath, P. (2018). Intuitionistic fuzzy n-normed algebra and continuous product. Proyecciones. Journal of Mathematics, 37(1), 63-83. Recuperado a partir de http://www.revistaproyecciones.cl/article/view/2781
Sección
Artículos