A Commutator rigidity for kleinian groups

  • Rubén A. Hidalgo Universidad Técnica Federico Santa María.

Resumen

In these notes we present a particular rigidity property for finitely generated discrete groups of isometries of the hyperbolic three space H3 . This property is closely related to the following result obtained in the papers [5], [2], [3] and [4].

Biografía del autor/a

Rubén A. Hidalgo, Universidad Técnica Federico Santa María.
Departamento de Matemáticas.

Citas

[1] A.F. Beardon. The geometry of discrete groups. Springer-Verlag, Graduate Text in Mathematics, New York, Heidelberg and Berlín, Vol. 91, (1983).
[2] R.A. Hidalgo. Homology coverings of Riemann surfaces. Tóhoku Math.J. 45, pp. 499-503, (1993).
[3] R.A. Hidalgo. Kleinian groups with common commutator subgroup. To appear in Complex Variables.
[4] R.A. Hidalgo. On noded fuchsian groups. Preprint.
[5] B. Maskit. The Homology covering of a Riemann surface. Tóhoku Math. J., pp. 561-562, (1986).
[6] M. Seppa.J.a. Geometry of Riemann surfaces and Teichmüller spaces.North-Holland Mathematics Studies, (1993).
Publicado
2018-04-03
Cómo citar
Hidalgo, R. (2018). A Commutator rigidity for kleinian groups. Proyecciones. Journal of Mathematics, 14(2), 75-81. https://doi.org/10.22199/S07160917.1995.0002.00001
Sección
Artículos