On the coerciveness property of the biharmonic operator

  • Gabriel N. Gatica Universidad de Concepción.
Palabras clave: Ecuaciones diferenciales, Laplace, Ecuación biarmónica

Resumen

We consider the weak formulation of the bilurmonic equation under two different kinds of boundary conditions. It is shown, in one case, that the coerciveness of the bilinear form associated can be easily deduced by using the continuous- dependence result for the Laplace equation with Dirichlet data. In the second case, a generalized l'oincare inequality is readily employed.

Biografía del autor/a

Gabriel N. Gatica, Universidad de Concepción.
Departamento de Matemática. 

Citas

AZIZ, A.; BABUSKA, I. : "Survey lectures on the mathematical foundations of the finite element method". In the mathematical foundations of the finite element method with applications to partial differential equations, A. Azis ed., Academic Press, New York, 1972.

CIARLET, P. : "The finite element method for elliptic problems". North-Holland Publishing Company, 1978.

FICHERA, G. "Linear elliptic differential systems and eigenvalue problems". Lecture notes in mathematics 8, Springer-Verlag, Berlin, 1965.

FRIEDMAN, A. : "Partial differential equations". Robert E. Krieger Publishing Company, lnc., 1969.

KUFNER, A.; JOHN, O.; FUCIK, S. "Function spaces". Prague, Academia, 1977.

REKTORYS, K. "Variational methods in mathematics, science and engineering". D. Reidel Publishing Co., Dordrecht, Holland, 1980.
Publicado
2018-04-02
Cómo citar
Gatica, G. (2018). On the coerciveness property of the biharmonic operator. Proyecciones. Journal of Mathematics, 10(17), 27-34. https://doi.org/10.22199/S07160917.1991.0017.00003
Sección
Artículos