On the coerciveness property of the biharmonic operator

Gabriel N. Gatica


We consider the weak formulation of the bilurmonic equation under two different kinds of boundary conditions. It is shown, in one case, that the coerciveness of the bilinear form associated can be easily deduced by using the continuous- dependence result for the Laplace equation with Dirichlet data. In the second case, a generalized l'oincare inequality is readily employed.

Palabras clave

Ecuaciones diferenciales; Laplace; Ecuación biarmónica

Texto completo:



AZIZ, A.; BABUSKA, I. : "Survey lectures on the mathematical foundations of the finite element method". In the mathematical foundations of the finite element method with applications to partial differential equations, A. Azis ed., Academic Press, New York, 1972.

CIARLET, P. : "The finite element method for elliptic problems". North-Holland Publishing Company, 1978.

FICHERA, G. "Linear elliptic differential systems and eigenvalue problems". Lecture notes in mathematics 8, Springer-Verlag, Berlin, 1965.

FRIEDMAN, A. : "Partial differential equations". Robert E. Krieger Publishing Company, lnc., 1969.

KUFNER, A.; JOHN, O.; FUCIK, S. "Function spaces". Prague, Academia, 1977.

REKTORYS, K. "Variational methods in mathematics, science and engineering". D. Reidel Publishing Co., Dordrecht, Holland, 1980.

DOI: http://dx.doi.org/10.22199/S07160917.1991.0017.00003

Enlaces refback

  • No hay ningún enlace refback.