On the multiplicative inverse eigenvalue problem

  • Ricardo Lorenzo Soto Montero Universidad Católica del Norte.
Palabras clave: eigenvalue, operator


An important inverse eigenvalue problem is the problem of finding a density q(x) such that the operator  , with the appropriate boundary conditions, possesses o prescribed spectrum, that is, the inverse vibrating string problem.

Biografía del autor/a

Ricardo Lorenzo Soto Montero, Universidad Católica del Norte.
Departamento de Matemáticas.


1. Biegler-Konig, F. W. Sufficient Conditions for the Solvability of Inverse Eigenvalue Problems. Linear Algebra and it Applications 40: 89-100, 1981.

2. De Oliveira, G. N. On the Multiplicative Inverse Eigenvalue Problem. Canadian Math. Bulletin 15: 189-193, 1972.

3. Dios da Silva, J.A. On the Multiplicative Inverse Eigenvalue Problem. Linear Algebra and its Applications 78: 133-145, 1986.

4. Downing, A. C. Jr. and Householder, A. S. Some Inverse Characteristic Value Problem. Journal Assoc. for Computing Machinery 3: 203-207, 1956.

5. Friedland, S. On Inverse Multiplicative Eigenvalue Problems for Matrices. Linear Algebra and its Applications 12: 127-137, 1975.

6. Hadeler, K. P. Multiplikative Inverse Eigenwertprobleme. Linear Algebra and i ts Appl. 2: 65-86, 1969.

7. Marcus, M. and Minc, H. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston, 1964.

8. Soto, R. On Matrix Inverse Eigenvalue Problems. Ph.D. Dissertation. New Mexico State University, U.S.A., 1987.

9. Wilkinson, J. H. The algebraic Eigenvalue Problem. Oxford University Press, London, 1965.
Cómo citar
Soto Montero, R. (2018). On the multiplicative inverse eigenvalue problem. Proyecciones. Revista De Matemática, 7(15), 1-20. https://doi.org/10.22199/S07160917.1988.0015.00001

Artículos más leídos del mismo autor/a

1 2 > >>