On the multiplicative inverse eigenvalue problem

Ricardo Lorenzo Soto Montero


An important inverse eigenvalue problem is the problem of finding a density q(x) such that the operator  , with the appropriate boundary conditions, possesses o prescribed spectrum, that is, the inverse vibrating string problem.

Palabras clave

eigenvalue; operator

Texto completo:



Biegler-Konig, F. W. Sufficient Conditions for the Solvability of Inverse Eigenvalue Problems. Linear Algebra and it Applications 40: 89-100, 1981.

De Oliveira, G. N. On the Multiplicative Inverse Eigenvalue Problem. Canadian Math. Bulletin 15: 189-193, 1972.

Dios da Silva, J.A. On the Multiplicative Inverse Eigenvalue Problem. Linear Algebra and its Applications 78: 133-145, 1986.

Downing, A. C. Jr. and Householder, A. S. Some Inverse Characteristic Value Problem. Journal Assoc. for Computing Machinery 3: 203-207, 1956.

Friedland, S. On Inverse Multiplicative Eigenvalue Problems for Matrices. Linear Algebra and its Applications 12: 127-137, 1975.

Hadeler, K. P. Multiplikative Inverse Eigenwertprobleme. Linear Algebra and i ts Appl. 2: 65-86, 1969.

Marcus, M. and Minc, H. A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston, 1964.

Soto, R. On Matrix Inverse Eigenvalue Problems. Ph.D. Dissertation. New Mexico State University, U.S.A., 1987.

Wilkinson, J. H. The algebraic Eigenvalue Problem. Oxford University Press, London, 1965.

DOI: http://dx.doi.org/10.22199/S07160917.1988.0015.00001

Enlaces refback

  • No hay ningún enlace refback.