Análisis convexo y dualidad en optimización

  • Raúl Aguila F. Universidad Católica de Valparaíso.
  • Fernando Paredes C. Universidad Católica de Valparaíso.
Palabras clave: funciones convexas

Resumen

La noción de convexidad es bastante clásica. Aparentemente la primera noción (17 .. ) de conjunto convexo se encuentra en la definición de equilibrio de un cuerpo sobre un plano horizontal: "Un cuerpo se encuentra en equilibrio sobre un plano horizontal, si la vertical que pasa por el centro de gravedad de dicho cuerpo penetra la envoltura convexa de sus puntos de apoyo". Esta definición ha sido recordada por J.J.Moreau [6], quien ha sido la persona que más ha contribuido al desarrollo de la teoría de las funciones convexas definidas en espacios vectoriales topológicos [7]. Es importante señalar también el texto de R.T. Rockafellar [8], en el cual desarrollo el análisis convexo en los espacios de dimensión finita.

Biografía del autor

Raúl Aguila F., Universidad Católica de Valparaíso.
Instituto de Matemática, Facultad de Ciencias Básicas y Matemáticas.
Fernando Paredes C., Universidad Católica de Valparaíso.
Instituto de Matemática, Facultad de Ciencias Básicas y Matemáticas.

Citas

[1] CLARKE, F.H. "Necessary conditions for nonsmooth problems in optimal Control and teh calculus of variations", Ph. D. Thesis , Department of Mathematics, University of Washington, Seattle, 1973.

[2] CLARKE, F.H. "Generalized Gradients and Applications", American Math. Soc., Vol. 205, 1975.

[3] CLARKE, F.H. "Optimization and Nonsmooth Analysis", J. Wiley, 1973.

[4] GILES, J.R. "Convex analysis with application in differentiation of convex functions", Pitman Adv. Publ. Program., 1982.

[5] HIRIART-URRUTY, J.B. "Miscellanies on Nonsmooth Analysis and Optimization", Charla en Sopron (Hungría), 1984.

[6] MOREAU, J.J. "La convexité en statique", Lectures Notes in Economics and Mathematical Systems, 102, 1974.

[7] MOREAU, J.J. "Fonctionnelles Convexes", séminaire sur les Equations aux Dérivées Partielles, College de France, París, 1966-67.

[8] ROCKAFELLAR, R.T. "Convex Analysis", Princeton Univ. Press, 1972.

[9] ROCKAFELLAR, R.T. "The Theory of Subgradients and its Applications to Problems of Optimization", Haldermann Verlag, 1981.
Publicado
2018-03-28
Cómo citar
Aguila F., R., & Paredes C., F. (2018). Análisis convexo y dualidad en optimización. Proyecciones. Journal of Mathematics, 4(10), 57-99. https://doi.org/10.22199/S07160917.1985.0010.00005
Sección
Artículos