A compactness embedding lemma, a principle of symmetric criticality and applications to elliptic problems

  • Daniel C. De Morais Universidade Federal da Paraíba.
  • Marco Aurelio S. Souto Universidade Federal da Paraíba.
  • Joao Marcos do Ó Universidade Federal da Paraíba.
Palabras clave: Compact embeding, critical Sobolev exponents, Palais-Smale condition and mountain-pass theorem, elliptic systems, incrustación compacta, exponentes críticos de Sobolev, condición de Palais-Smale, teorema del paso de montaña, sistemas elípticos.

Resumen

Biografía del autor

Daniel C. De Morais, Universidade Federal da Paraíba.
Campus II,Departamento de Matemática e Estatística.
Marco Aurelio S. Souto, Universidade Federal da Paraíba.
Campus II,Departamento de Matemática e Estatística.
Joao Marcos do Ó, Universidade Federal da Paraíba.
Campus I,Departamento de Matemática.

Citas

[1] C. O. Alves, Existência de solucoes positivas de equacoes elípticas nao-lineares variacionais em RN; Tese de Doutorado, Universidade de Brasília, Brasil, (1995)

[2] C.O. Alves - J. V. Goncalves - O. H. Miyagaki, Multiple positive solutions for semilinear elliptic equations in RN involving critical exponents. preprint (1996)

[3] Alves, C.O; D. C. de Morais Filho & M. A. S. Souto, On a system of elliptic equations with subcritical Sobolev exponent, Proceedings of the 450 Seminário Brasileiro de Análise- Florianópolis Brasil (1997)

[4] J. G. Azorero - I. P. Alonzo, Existence and nonuniqueness for pLaplacian: nonlinear eigenvalues, Comm. in Partial Differential Equations 12(12), pp. 1389-1430 (1987).

[5] J. G. Azorero - I. P. Alonzo, Problemas elípticos no lineales con exponentes críticos: falta de compacidad

[6] J. G. Azorero - I. P. Alonzo, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Transactions of the AMS, Vol. 323, No. 2, Feb, pp. 877-895, (1991).

[7] V. Benci - G. Cerami, Existence of positive solutions of the equations ∆u + a(x)u = u N N− +2 2 in RN, J. Funct. Anal. 88, pp. 90-117, (1990).

[8] H. Berestycki - P. L. Lions, Une methode locale pour l’existence de solutions positives de problemes semi-lineaires elliptiques dans RN, Journal D’Analyse Mathématique, vol. 38 , pp. 144 - 187, (1980).

[9] H. Brezis - E. Lieb, A relation between pointwise convergence of functions and convergence functional, Proc. Amer. Math. Cos. 88, pp. 486-490, (1983).

[10] H. Brezis - L. Nirenberg, Some variational problems with lack of compactness, Proc. Symp. Pure Math. (AMS) 45, pp. 165-201, (1986).

[11] H. Brezis - L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure and Appl. Math. 36, pp. 437-477, (1983).

[12] D. G. Costa, On a nonlinear elliptic problem, preprint, (1993).

[13] Y. Ding and S. Li, Existence of Solutions for Some Superlinear or Sublinear Elliptic Systems on RN, preprint (1993).

[14] H. Egnell, Semilinear elliptic equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104, pp. 27-56, (1988).

[15] H. Egnell, Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Rat. Mech. Anal. 104, pp. 57-77, (1988).

[16] H. Egnell, Elliptic boundary value problems with singular coefficients and critical nonlinearities, Indiana Univ. Math. Journal, Vol. 38, No. 2, pp. 235-251, (1989).

[17] Kavian O., Introducion a théorie des points critiques et applications aux problemes elliptiques, Universite de Nancy, (1993).

[18] P. L. Lions, Symétrie et compacité dans les espaces de Sobolev, Journal of Functional Analysis 49, pp. 315-334 (1982).

[19] O. Miyagaki, On a class of semilinear elliptic problems in RN with critical growth, CMS Technical Report # 94-12, Univ. Winscosin (1994).

[20] J. Mawhin - M. Willem, Critical point theory and Hamiltonian systems. Springer Verlag, Berlin (1989).

[21] W. Omana and M. Willem, Homoclinic Orbits for a Class of Hamiltonian Systems, Diff. and Int. Eq. 5, pp. 1115-1120.

[22] R. S. Palais, The principle of Symmetric Criticality, Mathematical Physics (1979).

[23] P. H. Rabinowitz, On a Class of nonlinear Schödinger equations, ZAMP 43, (1992).

[24] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55, pp. 149-162, (1977).

[25] G. Talenti, Best constant in Sobolev inequality, Ann. Math. 110, pp. 353-372 (1976).
Publicado
2017-06-14
Cómo citar
De Morais, D., Souto, M., & do Ó, J. (2017). A compactness embedding lemma, a principle of symmetric criticality and applications to elliptic problems. Proyecciones. Journal of Mathematics, 19(1), 1-17. https://doi.org/10.22199/S0716-09172000000100001
Sección
Artículos