Representation theorems of linear operators on p-adic function spaces

José Aguayo, Elsa Chandía, Jacqueline Ojeda

Resumen


Let X be a 0-dimensional Hausforff topological space, E, F nonarchimedean Banach spaces and Cb(X, E) the space of all continuous E-valued functions on X provided with two strict topologies. In this paper we show that every F-valued linear operator which is strictly continuous can be represented by a certain L(E, F )-valued measure defined on the ring of all clopen subsets of X.

Palabras clave


Banach spaces; F−valued linear operator; continuity; espacios de Banach; operador lineal F-valuado; continuidad.

Texto completo:

PDF

Referencias


J. Aguayo and J. Sanchez, Weakly compact operators and the strict topologies, Bulletin of the Australian Mathematical Society, Vol. 39, pp. 353-359, (1989).

J. Aguayo, N. De Grande-De Kimpe, S. Navarro, Strict locally convex topologies on BC(X, K), Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., pp. 1−9, (1997).

J. Aguayo, N. De Grande-De Kimpe, S. Navarro, Strict topologies and duals in spaces of functions, Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., pp. 1 − 10, (1999).110 José Aguayo, Elsa Chandía and Jacqueline Ojeda

J. Diestel and J. Uhl, Vector Measures, Mathematical Surveys and Monographs, Number 15, A.M.S., (1977).

A. Katsaras; Strict topologies in non-archimedean Function Spaces. Internat. J. Math. & Math. Sci., Vol 1, pp. 23-33, (1984).

A. Katsaras, Integral Representation of Continuous Linear Operators on p-adic Function Spaces, Proc. p-Adic Functional Analysis, Marcel Dekker, Inc., Vol 222, pp. 161-175, (2001).

A.C.M. Van Rooij; Non-archimedean functional analysis Marcel Dekker, (1978).

R.F.Wheeler, A survey of Baire measure y strict topologies, Expo. Math., 2, pp. 97-190, (1983).




DOI: http://dx.doi.org/10.4067/S0716-09172004000200003

Enlaces refback

  • No hay ningún enlace refback.