A new notion of SP-compact L-fuzzy sets

Shi-Zhong Bai


A new notion of SP-compactness is introduced in L-topological spaces by means of semi-preopen L-sets and their inequality, where L is a complete De Morgan algebra. This new notion does not depend on the structure of basis lattice L and L does not require any distributivity. This new notion implies semicompactness, hence it also implies compactness. This new notion is a good extension and it has many characterizations if L is completely distributive De Morgan algebra.

Palabras clave

L-topology; semi-preopen L-set; SP-compactness; L-topología; L-conjunto semi-preabierto; SP-compacidad.

Texto completo:



D.Andrijevic, Semi-preopen sets, Mat.Vesnik, 38, pp.24-32, (1986).

S.Z.Bai, L-fuzzy SP-compact sets, Advances in Mathematics, 33, pp.316-322, (2004).

S.Z.Bai, Countably SP-compact subsets, Fuzzy Systems and Mathematics, 19, pp.59-61, (2005).

C.L.Chang, Fuzzy topological spaces, J.Math.Anal.Appl. 24, pp.182-190, (1968).

P.Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, I, Nederl. Akad. Wetensch. Indag. Math. 44, pp.403-414, (1982).

G.Gierz, et al. A Compendium of Continuous Lattices, Springer Verlag, Berlin, (1980).

Y.M.Liu, M.K.Luo, Fuzzy Topology, World Scienti.c, Singapore, (1998).

F.G.Shi, Semicompactness in L-topological spaces, International Journal of Mathematics Mathematical Sciences, 12, pp.1869-1878, (2005).

F.G.Shi, A new form of fuzzy β-compactness, Proyecciones Journal of Mathematics, 24, pp.105-119, (2005).

F.G.Shi, Fuzzy compactness in L-topological spaces, Acta Math.Sinica, submitted.

S.S.Thakur, S.Singh, On fuzzy semi-preopen sets and fuzzy semiprecontinuity, Fuzzy Sets and Systems, 98, pp.383-391, (1998).

G.J.Wang, Theory of L-Fuzzy Topological Space, Shaanxi Normal University Press, Xian, (1988).

DOI: http://dx.doi.org/10.4067/S0716-09172006000300003

Enlaces refback

  • No hay ningún enlace refback.