A multiplier gliding hump property for sequence spaces

  • Charles Swartz New Mexico State University.


We consider the Banach-Mackey property for pairs of vector spaces E and E0 which are in duality. Let A be an algebra of sets and assume that P is an additive map from A into the projection operators on E. We define a continuous gliding hump property for the map P and show that pairs with this gliding hump property and another measure theoretic property are Banach-Mackey pairs,i.e., weakly bounded subsets of E are strongly bounded. Examples of vector valued function spaces, such as the space of Pettis integrable functions, which satisfy these conditions are given.

Biografía del autor/a

Charles Swartz, New Mexico State University.
Department of Mathematics.


[B] S. Banach, Theorie des Operations Lineaires, Warsaw, (1932).

[BF] J. Boos and D. Fleming, Gliding hump properties and some applications,Int. J. Math. Math. Sci., 18, pp. 121-132, (1995).

[Dr] L. Drewnowski, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym Theorems,Bull. Acad. Polon. Sci., 20, pp. 725- 731, (1972).

[FP] M. Florencio and P. Paul, Barrelledness conditions on certain vector valued sequence spaces, Arch. Math., 48, pp. 153-164, (1987).

[F] J. Fourie, Barrelledness Conditions on Generalized Sequence Spaces, South African J. Sci., 84, pp. 346-348, (1988).

[GKR] M.Gupta, P.K.Kamthan, and K.L.N. Rao, Duality in Certain Generalized Kothe Sequence Spaces, Bull. Inst. Math. Acad. Sinica, 5, pp. 285-298, (1977).

[Ha] H. Hahn, Uber Folgen linearen Operationen, Monatsch. fur Math. und Phys., 32, pp. 1-88, (1922).

[HT] E. Hellinger and O. Toeplitz, Grundlagen fur eine Theorie den unendlichen Matrizen. Math. Ann., 69, pp. 289-330, (1910).

[Hi] T. H. Hilldebrandt, On Uniform Boundedness of Sets of Functional Operations, Bull. Amer. Math Soc., 29, pp. 309-315, (1923).

[K] G. Kothe, Topological Vector Spaces, Springer-Verlag, Berlin, (1979).

[L] H. Lebesgue, Sur les integales singulieres, Ann. de Toulouse, 1, pp. 25-117, (1909).

[M] J. Mendoza, A barrelledness criteria for C0(E), Arch. Math., 40, pp. 156-158, (1983).

[N] D. Noll, Sequential Completeness and Spaces with the Gliding Hump Property, Manuscripta Math., 66, pp. 237-252, (1990).

[RR] K.P.S. Rao and M. Rao,Theory of Charges, Academic Press, N. Y., (1983).

[S] H.H. Schaefer, Topological Vector Spaces, MacMillan, N. Y., (1966).

[Sw1] C.

[Sw2] C. Swartz,Measure, Integration and Function Spaces, World Sci. Publ., Singapore, (1994).

[Sw3] C. Swartz, Infinite Matrices and the Gliding Hump,World Sci. Publ., Singapore, (1996).

[Sw4] C. Swartz, Topological Properties of the Space of Integrable Functions with respect to a Charge, Ricerche di Mat., to appear.

[Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).
Cómo citar
Swartz, C. (2017). A multiplier gliding hump property for sequence spaces. Proyecciones. Revista De Matemática, 20(1), 19-31. https://doi.org/10.4067/S0716-09172001000100002