Numerical uniformization of hyperelliptic-m-symmetric riemann surfaces

Rubén A. Hidalgo


In this note we consider hyperelliptic-M-symmetric Riemann surfaces, that is, hyperelliptic Riemann surfaces with a symmetry with maximal number of components of fixed points. These surfaces can be represented either by real algebraic curves or by real Schottky groups. To obtain one of these in terms of the other is difficult. In this note we proceed to describe explicit transcendental relations between the different sets of parameters these representations give. This can be used to obtain a computer program which permits obtain numerical approximations of the algebraic curve in terms of real Schottky group and viceversa.

Palabras clave

Schottky groups ; Riemann surfaces ; Riemann matrices.

Texto completo:



Burnside, W. On a class of Automorphic Functions. Proc. London Math. Soc. Vol 23, pp. 49-88, (1892)

Buser, P. and Silhol, R. Geodesics, periods and Equations of Real Hyperelliptic Curves. Preprint.


Enlaces refback

  • No hay ningún enlace refback.