Fixed points of a family of exponential maps

  • Eric M. Blabac Iowa State University.
  • Justin R. Peters Iowa State University.

Resumen

We consider the family of functions fλ(z) = exp(iλz), λ real. With the help of MATLAB computations, we show fλ has a unique attracting fixed point for several values of λ. We prove there is no attracting periodic orbit of period n ≥ 2.

Biografía del autor

Eric M. Blabac, Iowa State University.
Department of Mathematics. 
Justin R. Peters, Iowa State University.
Department of Mathematics.

Citas

[1] Borwein, Jonathan M, and Corless, Robert M., Emerging Tools for Experimental Mathematics, Amer. Math. Monthly 106, No. 10, pp. 899— 909, (1999).

[2] Devaney, Robert L., An Introduction to Chaotic Dynamical Systems, Addison-Wesley, (1989).

[3] Rubenfeld, Lester A., A First Course in Applied Complex Variables, John Wiley & Sons, (1985).
Publicado
2017-04-20
Cómo citar
Blabac, E., & Peters, J. (2017). Fixed points of a family of exponential maps. Proyecciones. Revista De Matemática, 24(3), 229-237. https://doi.org/10.4067/S0716-09172005000300003
Sección
Artículos

Artículos más leídos del mismo autor/a