On the Algebraic Dimension Of Banach Spaces Over Non-Archimedean Valued Fields Of Arbitrary Rank

  • Herminia Ochsenius Pontificia Universidad Catolica de Chile, Chile.
  • W. H. Schikhof Radboud University, The Netherlands.
Palabras clave: Banach spaces, Valued fields, Algebraic dimension.

Resumen

Let K be a complete non-archimedean valued field of any rank, and let E be a K-Banach space with a countable topological base. We determine the algebraic dimension of E (2.3, 2.4, 3.1).

Biografía del autor

Herminia Ochsenius, Pontificia Universidad Catolica de Chile, Chile.
Facultad de Matemáticas.
W. H. Schikhof, Radboud University, The Netherlands.
Department of Mathematics.

Citas

[1] T. Jech. Set Theory. San Diego: Academic Press. U. S. A., (1978).

[2] G. Köthe. Topological Vector spaces. New York: Springer-Verlag, (1969).

[3] H. Ochsenius and W. Schikhof. Banach spaces over fields with an in- finite rank valuation. In: p-adic Functional Analysis, Lecture Notes in pure and applied mathematics 207, edited by J. Kakol, N. De GrandeDe Kimpe and C. Perez-Garcia. Marcel Dekker, pp. 233-293, (1999).
Publicado
2017-04-12
Cómo citar
Ochsenius, H., & Schikhof, W. (2017). On the Algebraic Dimension Of Banach Spaces Over Non-Archimedean Valued Fields Of Arbitrary Rank. Proyecciones. Journal of Mathematics, 26(3), 237-244. https://doi.org/10.4067/S0716-09172007000300001
Sección
Artículos