Strong right fractional calculus for Banach space valued functions

George A. Anastassiou


We present here a strong right fractional calculus theory for Banach space valued functions of Caputo type. Then we establish many right fractional Bochner integral inequalities of various types.

Palabras clave

Right Fractional derivative; Right Fractional Taylor’s formula; Banach space valued functions; integral inequalities; Hausdorff measure; Bochner integral

Texto completo:



R.P. Agarwal, V. Lupulescu, D. O’Regan, G. Rahman, Multi-term fractional differential equations in a nonreflexive Banach space, Advances in Difference Equation, (2013), 2013:302.

C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer, New York, (2006).

G. Anastassiou, Fractional Differentiation Inequalities, Springer, New York, (2009).

G. Anastassiou, Advances on fractional inequalities, Springer, New York, (2011).

Appendix F, The Bochner integral and vector-valued Lp-spaces,

Bochner integral. Encyclopedia of Mathematics. URL: integral&oldid=38659.

R.F. Curtain and A.J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London, New York, (1977).

M. Kreuter, Sobolev Spaces of Vector-valued functions, Ulm Univ., Master Thesis in Math., Ulm, Germany, (2015).

E. Landau, Einige Ungleichungen f¨ ur zweimal differentzierban funktionen, Proc. London Math. Soc. 13, pp. 43-49, (1913).

J. Mikusinski, The Bochner integral, Academic Press, New York, (1978).

G.E. Shilov, Elementary Functional Analysis, Dover Publications, Inc., New York, (1996).

C. Volintiru, A proof of the fundamental theorem of Calculus using Hausdorff measures, Real Analysis Exchange, 26 (1), 2000/2001, pp. 381-390.


Enlaces refback

  • No hay ningún enlace refback.