A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps

  • S. S. Dragomir Victoria University.
Palabras clave: Operator convex functions, Convex functions, Power function, Logarithmic function, Exponential function.

Resumen

In this paper we show that the celebrated Davis-Choi-Jensen’s inequality for normalised positive linear maps can be extended in a weakened form for convex functions. A reverse inequality and applications for important instances of convex (concave) functions are also given.

Biografía del autor/a

S. S. Dragomir, Victoria University.
College of Engineering & Science.

Citas

[1] M. D. Choi, Positive linear maps on C*-algebras. Canad. J. Math. 24, pp. 520—529, (1972).

[2] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. J. Inequal. Appl., Art. ID 496821, 15, (2010).

[3] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, xii+121 pp. ISBN: 978-1-4614-1520-6, (2012).

[4] S. S. Dragomir and N. M. Ionescu, Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 23, No. 1, pp. 71-78. MR:1325895 (96c:26012), (1994).

[5] C. A. McCarthy, cp, Israel J. Math., 5, pp. 249-271, (1967).

[6] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19, pp. 405-420, (1993).

[7] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond- Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, (2005).
Publicado
2017-04-06
Cómo citar
Dragomir, S. (2017). A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps. Proyecciones. Journal of Mathematics, 36(1), 81-94. https://doi.org/10.4067/S0716-09172017000100005
Sección
Artículos