A weakened version of Davis-Choi-Jensen’s inequality for normalised positive linear maps

S. S. Dragomir


In this paper we show that the celebrated Davis-Choi-Jensen’s inequality for normalised positive linear maps can be extended in a weakened form for convex functions. A reverse inequality and applications for important instances of convex (concave) functions are also given.

Palabras clave

Operator convex functions; Convex functions; Power function; Logarithmic function; Exponential function.

Texto completo:



M. D. Choi, Positive linear maps on C*-algebras. Canad. J. Math. 24, pp. 520—529, (1972).

S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. J. Inequal. Appl., Art. ID 496821, 15, (2010).

S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, xii+121 pp. ISBN: 978-1-4614-1520-6, (2012).

S. S. Dragomir and N. M. Ionescu, Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 23, No. 1, pp. 71-78. MR:1325895 (96c:26012), (1994).

C. A. McCarthy, cp, Israel J. Math., 5, pp. 249-271, (1967).

B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19, pp. 405-420, (1993).

J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond- Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, (2005).

DOI: http://dx.doi.org/10.4067/S0716-09172017000100005

Enlaces refback

  • No hay ningún enlace refback.