θ-generalized semi-open and θ-generalized semi-closed functions

  • Govindappa B. Navalagi G.H. College.
  • Hanif Page B. V. B. College of Eng. and Tech.
Palabras clave: θgs-closed, θgs-open, Pre θgs-open, Pre θgs-closed, θgsclosed function, θgs-open function, θgs-homeomorphism, θgsc-homeomorphism.

Resumen

In this paper, we introduce and study the notions of θ-generalized-semi-open function, θ-generalized- semi-closed function,pre θ-generalized-semi-open function,pre θ-generalized-semi-closed function, contra pre θ-generalized-semi-open, contra pre θ-generalized-semi-do sed function and θ-generlized-sem-homeomorphism in topological spaces and study their properties.

Biografía del autor

Govindappa B. Navalagi, G.H. College.
KLE Society’s, Department of Mathematics.
Hanif Page, B. V. B. College of Eng. and Tech.
Department of Mathematics.

Citas

[1] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21, pp. 717-719, (1990).

[2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Uni. Ser.A (Math.), 12, pp. 5-13, (1991).

[3] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math.,29 (3), pp. 375-382, (1987).

[4] M. Caldas and S. Jafri, On θ-semi generalized closed sets in topology, Kyngpook Math. J., 43, pp. 135-148, (2003).

[5] S. G. Crossely and S.K. Hildbrand, On semi-closure. Texas J. Sci, 22, pp. 99-112, (1971).

[6] R. Devi , K. Balachandran and H. Maki, Semi-generalized and generalized semi maps, Mem. Fac. Sci. Kochi. Uni. Ser. A (Math.), 14, pp. 41-54, (1993).

[7] G. Di Maio, T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18, pp. 226-233, (1987).

[8] J. Dontechev and H. Maki, On θ-generalized closed sets, Internat. J. Math.and Math. Sci. 22, pp. 239-249, (1999).

[9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer.Math. Monthly 70, pp. 36-41, (1963).

[10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).

[11] H. Maki, P. Sundaram and K. Balachandran, On generalized homeomorphismsin topological spaces, Bull. Fukuoka Univ. Ed. III , 40 (1991).

[12] Govindappa Navalagi and Md. Hanif Page, On θgs-Neighbiurhoods, accepted for publication, Indian Journal of Mathematics and Mathematical Sciences, Vol. 2, 2 (Dec.2007).

[13] Govindappa Navalagi and Md. Hanif Page, On some more properties of θgs- Neighbiurhoods (Communicated).

[14] Govindappa Navalagi and Md. Hanif Page, On θgs-continuity and θ gs-irresoluteness (Communicated).

[15] Govindappa Navalagi and Md. Hanif Page, On some separation axioms via θgs- open sets (Communicated).

[16] N. V. Velicko, On H-closed topological spaces, Amer. Math. Soc. Transl., 78, pp. 103-118, (1968).
Cómo citar
[1]
G. Navalagi y H. Page, θ-generalized semi-open and θ-generalized semi-closed functions, Proyecciones (Antofagasta, En línea), vol. 28, n.º 2, pp. 111-123, 1.
Sección
Artículos

Artículos más leídos del mismo autor/a