A convergence result for unconditional series in Lp(μ)

  • Juan M. Medina Universidad de Buenos Aires.
  • Bruno Cernuschi-Frías Universidad de Buenos Aires.
Palabras clave: Unconditional basic sequence, Almost sure convergence, Random series.

Resumen

We give sufficient conditions for the convergence almost everywhere of the expansion with respect to an unconditional basis for functions in Lp p > 2. This result extends the classical theorem of Menchoff and Rademacher for orthogonal series in L2.

Biografía del autor

Juan M. Medina, Universidad de Buenos Aires.
Facultad de Ingeniería Instituto Argentino de Matematica Paseo Colion 850 (1063) Capital Federal CONICET.
Bruno Cernuschi-Frías, Universidad de Buenos Aires.
Facultad de Ingeniería Instituto Argentino de Matematica Paseo Colion 850 (1063) Capital Federal CONICET.

Citas

[1] Alexits G. , Convergence Problems of Orthogonal Series, Pergamon Press, (1961).

[2] Bennett, G. Unconditional Convergence and Almost Everywhere Convergence Z. Wahrs. verw. Gebeite Vol. 34, pp. 135-155, (1976).

[3] Gerre, S., Classical Sequences in Banach Spaces, Marcel Dekker, (1992).

[4] Houdré C. On the almost sure convergnece of series of satationary and related nonstationary variables, Ann. of Prob. Vol. 23 (3), pp. 1204- 1218, (1985).

[5] Kahane J. P. Some Random Series of Functions, Cambridge, (1993).

[6] Lindenstrauss J. Tzafriri L. Classical Banach Spaces, Vol. I y II, Springer Verlag 2ed., (1996).

[7] Loéve M., Probability Theory, Vol. I, Springer Verlag, (1977).

[8] Medina J. M. , Cernuschi -Frías B. Random series in Lp(X, Σ, µ) using Unconditional Basic Sequences and l p stable sequences: A result on almost sure almost everywhere convergence, Proc. A. M. S. Vol.135 (11), pp. 3561-3569, (2007).

[9] Menchoff D. Sur les séries de fonctions orthogonales I., Fund. Math. 4, 1923, pages 82-105. Vol. 40 (2), September, pp. 1490-1503, (1994).

[10] Móricz F., Tándori K. An Improved Menshov-Rademacher Theorem, Proc. A. M. S. Vol. 124 (3), pp. 877-885, (1996).

[11] Ørno P. A note on Unconditionally converging series in ¨ Lp, Proc. A. M. S. Vol. 59 (2), 252-254, (1976). Lecture Notes in Mathematics No. 672, Springer-Verlag, (1978).

[12] Wojtaszczyk P. Banach Spaces for Analysts, Cambridge, (1996).

[13] Yang L., Unconditional Basic Sequence in Lp(µ) and its l p stability, Proc. A. M. S. Vol. 127(2), pp. 455-464, (1999).

[14] Zygmund A., Trigonometric Series, Vol II. Cambridge, (1958).
Cómo citar
Medina, J., & Cernuschi-Frías, B. (1). A convergence result for unconditional series in Lp(μ). Proyecciones. Journal of Mathematics, 32(4), 305-319. https://doi.org/10.4067/S0716-09172013000400001
Sección
Artículos