Statistically pre-Cauchy Fuzzy real-valued sequences defined by Orlicz function

Amar Jyoti Dutta, Binod Chandra Tripathy

Resumen


In this articlewehavedefined statistically pre-Cauchy sequence of fuzzy real numbers defined by Orlicz function. We have proved a necessary and sufficient condition for a sequence X =(Xkof fuzzy real numbers to be statistically pre-Cauchy. We have also established some other results.

Palabras clave


Statistically pre-Cauchy; statistically convergence; Orlicz function; fuzzy real numbers; estadística pre-Cauchy; convergencia estadística; funció de Orlicz; números reales difusos.

Texto completo:

PDF

Referencias


H. Altinok, Y. Altin, and M. Et: Lacunary almost statistical convergence of fuzzy numbers, Thai J. Math., 2 (2), pp. 265-274, (2004).‏

J. S. Connor, J. Fridy and J. Kline: Statistically Pre-Cauchy Sequences,‏ Analysis, 14, pp. 311-317, (1994).‏

A. J. Dutta: Lacunary p-absolutely summable sequence of fuzzy real‏ number, Fasc. Math., 46, pp. 58-64, (2011).‏

A. Esi and M. Et: Some new sequence spaces defined by a sequence‏ of Orliccz functions, Indian j. Pure Appl. Math., 31 (8), pp. 967-972,‏ (2000).‏

M. Et: On some new Orlicz sequence spaces, J. Analysis, 9, pp. 21-28,‏ (2001).‏

A. Esi: On some new classes of sequences of fuzzy numbers, Int. J.‏ Math. Anal., 2 (17), pp. 837-844, (2008).

A. Esi: Generalized Difference Sequence Spaces Defined by Orlicz Functions, Gen. Math., 17 (2), pp. 53-66, (2009).‏

H. Fast: Sur la Convergence Statistique, Colloq. Math., 2, pp. 241-244,‏ (1951).‏

J. A. Fridy: On Statistical Convergence, Anal., 5, pp. 301-313, (1985).‏

V. A. Khan and Q. M. Lohani: Statistically Pre-Cauchy Sequences‏ and Orlicz Functions, Southeast Asian Bull. Math., 31, pp. 1107-1112,‏ (2007).‏

M. Mursaleen and M. Ba¸ sarir: On some new sequence spaces of fuzzy‏ numbers, Indian J. Pure Appl. Math., 34 (9), pp. 1351-1357, (2003).‏

E. Savas: A note on sequence of Fuzzy numbers,Inf. Sc., 124, pp. 297-300, (2000).

I. J. Schoenberg: The integrability of certain functions and related‏ summability methods, Am. Math. Mon., 66, pp. 361-375, (1959).‏

B. C. Tripathy and A. J. Dutta: On fuzzy real-valued double sequence‏ spaces, Math. Comput. Modelling, 46, pp. (9-10), pp. 1294-1299, (2007).‏

A. J. Dutta and B. C. Tripathy : On I-acceleration convergence of‏ sequences of fuzzy real numbers, Math. Modelling Anal., 17 (4), pp. 549-557, (2012).

B. C. Tripathy and A. J. Dutta: Lacunary bounded variation sequence‏ of fuzzy real numbers, J. Intell. Fuzzy Syst., 24 (1), pp. 185-189, (2013).‏

B. C. Tripathy and B. Sarma: Sequence spaces of fuzzy real numbers‏ defined by Orlicz functions, Math. Slov. 58 (5), pp. 621-628, (2008).‏

B. C. Tripathy and B. Sarma: On I-convergent double sequences of‏ fuzzy real numbers, Kyungpook Math. J., 52 (2), pp. 189-200, (2012)‏.




DOI: http://dx.doi.org/10.4067/S0716-09172014000300001

Enlaces refback

  • No hay ningún enlace refback.