Stability in delay Volterra difference equations of neutral type

  • Ernest Yankson University of Cape Coast.
  • Emmanuel K. Essel University of Cape Coast.
Palabras clave: Banach’s Fixed point theorem, Volterra difference equation, Asymptotic stability.

Resumen

Sufficient conditions for the zero solution of a certain class of neutral Volterra difference equations with variable delays to be asymptotically stable are obtained. The Banach’s fixed point theorem is employed in proving our results.

Biografía del autor

Ernest Yankson, University of Cape Coast.
Department of Mathematics and Statistics.
Emmanuel K. Essel, University of Cape Coast.
Department of Mathematics and Statistics.

Citas

[1] A. Ardjouni, and A. Djoudi; Stability in nonlinear neutral Volterra difference equations with variable delays, Journal of Nonlinear Evolution Equations and Applications, No. 7, pp. 89-100, (2013).

[2] A. Ardjouni, and A. Djoudi; Stability in linear neutral difference equations with variable delays, Mathematica Bohemica, No. 3, pp. 245-258, (2013).

[3] S. Elaydi, Periodicity and stability of linear Volterra difference systems, Journal of Mathematical Analysis and Applications, 181, pp. 483-492, (1994).

[4] S. Elaydi, An Introduction to Difference Equations, Springer, New York, (1999).

[5] M. Islam and E. Yankson, Boundedness and stability in nonlinear delay difference equations employing fixed point theory, Electronic Journal of Qualitative Theory of Differential Equations, No. 26, pp. 1-18, (2005).

[6] W. G. Kelly and A. C. Peterson, Difference Equations : An Introduction with Applications, Academic Press, (2001).

[7] Y. N. Raffoul, Stability and periodicity in discrete delay equations, Journal of Mathematical Analysis and Applications, 324, No. 2, pp. 1356-1362, (2006).

[8] Y. N. Raffoul, Periodicity in general delay nonlinear difference equations using fixed point theory, Journal of Difference Equations and Applications, 10, No. 1315, pp. 1229-1242, (2004).

[9] Y. N. Raffoul, General theorems for stability and boundedness for nonlinear functional discrete systems, Journal of Mathematical Analysis and Applications, 279, pp. 639-650, (2003).

[10] D. R. Smart, Fixed point theorems ; Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, (1974).

[11] E. Yankson, Stability in discrete equations with variable delays, Electronic Journal of Qualitative Theory of Differential Equations, No. 8, pp. 1-7, (2009).

[12] E. Yankson, Stability of Volterra difference delay equations, Electronic Journal of Qualitative Theory of Differential Equations, No. 20, pp. 1-14, (2006).
Cómo citar
Yankson, E., & Essel, E. (1). Stability in delay Volterra difference equations of neutral type. Proyecciones. Journal of Mathematics, 34(3), 229-241. https://doi.org/10.4067/S0716-09172015000300003
Sección
Artículos