A New Closed Graph Theorem on Product Spaces

S. Zhong, G. Zhao


We obtain a new version of closed graph theorem on product spaces. Fernandez’s closed graph theorem for bilinear and multilinear mappings follows as a special case.

Palabras clave

Closed graph theorem ; Product spaces ; Bilinear map pings ; Bi-mappings ; Multi-mappings.

Texto completo:



S. Banach, Theorie des Operations Lineaires, Warszawa, (1932).

V. Brattka and G. Gherardi, Effective choice and boundedness principles in computable analysis, Bull. Symb. Log. 17, No. 1, pp. 73—117, (2011).

P. J. Cohen, A counterexample to the closed graph theorem for bilinear maps, J. Func. Anal. 16, No. 2, pp. 235—240, (1974).

C. S. Fernandez, Research notes the closed graph theorem for multilinear mappings, Internat. J. Math. Math. Sci. 19, No. 2, pp. 407—408, (1996).

J. C. Ferrando and L. M. S. Ruiz, On C-Suslin spaces, Math. Nachr. 288, No. 8-9, pp. 898—904, (2015).

T. Guo, On some basic theorems of continuous module homomorphisms between random normed modules, J. Funct. Space Appl. (2013), Article Number: 989102.

M. D. Mabula and S. Cobzas, Zabrejko’s lemma and the fundamental principles of functional analysis in the asymmetric case, Topology Appl. 184, No. 4, pp. 1—15, (2015).

M. Saheli, A. Hasankhani and A. Nazari, Some properties of fuzzy norm of linear operators, Iran. J. Fuzzy Syst. 11, No. 2, 121—139, (2014).

A. Wilansky, Modern Methods in Topological Vector Spaces, McGrawHill, New York, (1978).

M. Wojtowicz and W. Sieg, P-spaces and an unconditional closed graph theorem, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 104, No. 1, pp. 13—18, (2010).

S. Zhong and R. Li, Continuity of mappings between Fréchet spaces, J. Math. Anal. Appl. 311, No. 2, pp. 736—743, (2005).

S. Zhong, R. Li and S. Y. Won, An improvement of a recent closed graph theorem, Topology Appl. 155, No. 15, pp. 1726—1729, (2008).

DOI: http://dx.doi.org/10.4067/S0716-09172015000400008

Enlaces refback

  • No hay ningún enlace refback.