Hypo-k-Totally Magic Cordial Labeling of Graphs

P. Jeyanthi, N. Angel Benseera, Gee Gee Lau

Resumen


A graph G is said to be hypo-k-totally magic cordial if G — {v} is k-totally magic cordial for each vertex v in V(G). In this paper, we establish that cycle, complete graph, complete bipartite graph and wheel graph admit hypo-k-totally magic cordial labeling and some families of graphs do not admit hypo-k-totally magic cordial labeling.

Palabras clave


k-totally magic cordial labeling ; Hypo-k-totally magic cordial labeling ; Hypo-k-totally magic cordial graph ; Complete graph ; Complete bipartite graph ; Wheel graph.

Texto completo:

PDF

Referencias


I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, pp. 201—207, (1987).

I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22, pp. 247—258, (2002).

F. Harary, Graph Theory, Addison-Wesley Publishing Co., (1969).

P. Jeyanthi, N. Angel Benseera and M. Immaculate Mary, On totally magic cordial labeling, SUT Journal of Mathematics, 49, pp. 13—18, (2013).

P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of one-point union of n copies of a graph, Opuscula Mathematica, 34 (1), pp. 115—122, (2014).

P. Jeyanthi and N. Angel Benseera, Totally magic cordial deficiency of some graphs, Utilitas Mathematica, (to appear).

P. Jeyanthi, N. Angel Benseera and Gee-Choon Lau, On k-Totally magic cordial labeling of graphs, Discrete Mathematics, Algorithms and Applications, Vol. 7, No. 3, 1550024, 7 pages, (2015), DOI: 10.1142/S179383091550024X.

P. Jeyanthi and N. Angel Benseera, Totally magic cordial labeling of some graphs, Journal of Algorithms and Computation, 46 (1), pp. 1-8, 2015.




DOI: http://dx.doi.org/10.4067/S0716-09172015000400004

Enlaces refback

  • No hay ningún enlace refback.