Odd harmonious labeling of some cycle related graphs

P. Jeyanthi, S. Philo


A graph G(p, q) is said to be odd harmonious if there exists an in-jection f : V(G)→ {0,1, 2, ..., 2q — 1} such that the induced function f * : E(G) → {1, 3, ... 2q — 1} defined by f * (uv) = f (u) + f (v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper we prove that any two even cycles sharing a common vertex and a common edge are odd harmonious graphs.

Palabras clave

Harmonious labeling; odd harmonious labeling; odd harmonious graph; strongly odd harmonious labeling; strongly odd harmonious graph; etiquetado armonioso; etiquetado armonioso impar; grafo armonioso impar.

Texto completo:



M. E. Abdel-Aal, Odd Harmonious Labelings of Cyclic Snakes, International Journal on applications of Graph Theory in Wireless Adhoc networks and Sensor Networks, 5 (3), pp. 1—13, (2013).

M. E. Abdel-Aal, New Families of Odd Harmonious Graphs, International Journal of Soft Computing, Mathematics and Control, 3 (1), pp. 1—13, (2014).

J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronics Journal of Combinatorics, (2015) #DS6.

R. L. Graham and N. J. A Sloane, On Additive bases and Harmonious Graphs, SIAM J. Algebr. Disc. Meth., 4, pp. 382—404, (1980).

A. Gusti Saputri, K. A. Sugeng and D. Froncek, The Odd Harmonious Labeling of Dumbbell and Generalized Prism Graphs, AKCE Int. J. Graphs Comb., 10 (2), pp. 221—228, (2013).

F. Harary, Graph Theory, Addison-Wesley, Massachusetts, (1972).

Z. Liang, Z. Bai, On the Odd Harmonious Graphs with Applications, J. Appl. Math. Comput., 29, pp. 105—116, (2009).

P. Jeyanthi , S. Philo and Kiki A. Sugeng, Odd harmonious labeling of some new families of graphs, SUT Journal of Mathematics., Vol.51, No 2, pp. 53-65, (2015).

P. Selvaraju, P. Balaganesan and J.Renuka, Odd Harmonious Labeling of Some Path Related Graphs, International J. of Math. Sci. & Engg.Appls., 7 (III), pp. 163—170, (2013).

S. K. Vaidya and N. H. Shah, Some New Odd Harmonious Graphs, International Journal of Mathematics and Soft Computing, 1, pp.9—16, (2011).

S. K. Vaidya, N. H. Shah, Odd Harmonious Labeling of Some Graphs, International J. Math. Combin., 3, pp. 105—112, (2012).

DOI: http://dx.doi.org/10.4067/S0716-09172016000100006

Enlaces refback

  • No hay ningún enlace refback.