A generalization of Drygas functional equation

  • A. Charifi Ibn Tofail University.
  • Muaadh Almahalebi Ibn Tofail University.
  • Samir Kabbaj Ibn Tofail University.
Palabras clave: Automorphism group, difference operator, Drygas functional equation, automorfismo de grupos, operador diferencial, ecuación funcional de Drygas.

Resumen

We obtain the Solutions of the following Drygas functional equation∑ λ ∈Φ f (x + λy + aλ ) = κf(x)+ ∑ λ ∈Φ f(λy), x, y ∈ Swhere S is an abelian semigroup, G is an abelian group, f ∈ GS, Φ is a finite automorphism group of S with order k, and aλ ∈ S, λ∈Φ.

Biografía del autor

A. Charifi, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.
Muaadh Almahalebi, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.
Samir Kabbaj, Ibn Tofail University.
Department of Mathematics, Faculty of Sciences.

Citas

[1] M. Ait Sibaha, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of the K-quadratic functional equation, J. Ineq. Pure and appl.‏ Math 8, (2007).‏

[2] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation‏ over p-adic fields, Real Analysis Exchange, 31 (1), pp. 125-132, (2005).‏

[3] J. Baker, A general functional equation and its stability, Proceedings‏ of the American Mathematical Society, 133(6), pp. 1657-1664, (2005).‏

[4] B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of the‏ Cauchy linear functional equation, Tamsui Oxford Journal of Mathematical Sciences 23 (4), pp. 449-459, (2007).‏

[5] A. Charifi, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability‏ of a generalized Pexider functional equation, Banach J. Math. Anal, 1‏ (2), pp. 176-185, (2007).‏

[6] A. Charifi,B. Bouikhalene, E. Elqorachi, A. Redouani, Hyers-UlamRassias stability of a generalized Jensen functional equation, Aust. J.‏ Math. Anal. Appl, 6 (1), pp. 1-16, (2009).‏

[7] AB. Chahbi, A. Charifi, B. Bouikhalene, S. Kabbaj, Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional equation, Arab Journal of Mathematical Sciences, 21 (1), pp.‏ 67-83, (2015).‏

[8] D. Z. Djokovic, A representation theorem for (X1−1)(X2−1)...(Xn−1)‏ and its applications, In Annales Polonici Mathematici 22 (2), pp. 189-198, (1969).‏

[9] H. Drygas, Quasi-inner products and their applications, Springer‏ Netherlands., pp. 13-30, (1987).‏

[10] B. R. Ebanks, P. L. Kannappan, P. K. Sahoo, A common generalization‏ of functional equations characterizing normed and quasi-inner-product‏ spaces, Canad. Math. Bull, 35 (3), pp. 321-327, (1992).‏

[11] V. A. Faiziev, P. K. Sahoo, On Drygas functional equation on groups,‏ Int. J. Appl. Math. Stat. 7, pp. 59-69, (2007).‏

[12] M. Frechet, Une d´ efinition fonctionnelles des polynˆ omes, Nouv. Ann.‏ 9, pp. 145-162, (1909).‏

[13] A. Gianyi, A characterization of monomial functions, Aequationes‏ Math. 54, pp. 343-361, (1997).‏

[14] D. H. Hyers, Transformations with bounded n-th differences, Pacific J.‏ Math., 11, pp. 591-602, (1961).‏

[15] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh.‏ Math. Sem. Univ. Hamburg, 70, pp. 175-190, (2000).‏

[16] S.-M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (3), pp. 645-656, (2001).‏

[17] S.-M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas,‏ Aequationes Math., 64 (3), pp. 263-273, (2002).‏

[18] R. Ã Lukasik, Some generalization of Cauchy’s and the quadratic functional equations, Aequat. Math., 83, pp. 75-86, (2012).‏

[19] S. Mazur, W. Orlicz, Grundlegende Eigenschaften der Polynomischen‏ Operationen, Erst Mitteilung, Studia Math., 5, pp. 50-68, (1934).‏

[20] A. K. Mirmostafaee, Non-Archimedean stability of quadratic equations,‏ Fixed Point Theory, 11 (1), pp. 67-75, (2010).‏

[21] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations,‏ CRC Press, Boca Raton, Florida, (2011).‏

[22] P. Sinopoulos, Functional equations on semigroups, Aequationes Math.‏ 59, pp.255-261, (2000).‏

[23] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequ. Math. 77, pp. 89-97, (2009).‏

[24] H. Stetkær, Functional equations on abelian groups with involution. II,‏ Aequationes Math. 55, pp. 227-240, (1998).‏

[25] H. Stetkær, Functional equations involving means of functions on the‏ complex plane, Aequationes Math. 55, pp. 47-62, (1998).‏

[26] Gy. Szabo, Some functional equations related to quadratic functions,‏ Glasnik Math. 38, pp. 107-118, (1983).‏

[27] D. Yang, Remarks on the stability of Drygas equation and the Pexiderquadratic equation, Aequationes Math. 68, pp. 108-116, (2004).‏ ‏
Publicado
2017-03-23
Cómo citar
Charifi, A., Almahalebi, M., & Kabbaj, S. (2017). A generalization of Drygas functional equation. Proyecciones. Journal of Mathematics, 35(2), 159-176. https://doi.org/10.4067/S0716-09172016000200002
Sección
Artículos

Artículos más leídos del mismo autor/a

1 2 > >>