# Total edge irregularity strength of disjoint union of double wheel graphs

• P. Jeyanthi Govindammal Aditanar College for Women.
• A. Sudha Wavoo Wajeeha Women’s College of Arts & Science.
Palabras clave: Irregularity strength, total edge irregularity strength, edge irregular total labeling, disjoint union of double wheel graphs, fuerza de irregularidad, fuerza total de irregularidad, etiquetado irregular total de borde

### Resumen

An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V, E) is a labeling of vertices and edges of G in such a way thatfor any two different edges uv and u'v' their weights f (u) + f (uv) + f (v) and f (u') + f (u'v') + f (v') are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs.

### Biografía del autor

P. Jeyanthi, Govindammal Aditanar College for Women.
Research Centre, Department of Mathematics.
A. Sudha, Wavoo Wajeeha Women’s College of Arts & Science.
Department of Mathematics.

### Citas

[1] A. Ahmad and M.Baca, and Muhammad Numan, On irregularity strength of the disjoint union of friendship graphs, Electronic Journal of Graph Theory and Applications, 11 (2), pp. 100—108, (2013).

[2] M.Baca, S.Jendrol, M. Miller and J. Ryan, On irregular total labellings, Discrete Math., 307, pp. 1378-1388, (2007).

[3] J.Ivanco, S.Jendrol, Total edge irregularity strength of trees, Discussiones Math. Graph Theory, 26, pp. 449-456, (2006).

[4] M.K.Siddiqui, A.Ahmad, M.F.Nadeem, Y.Bashir, Total edge irregularity strength of the disjoint union of sun graphs, International Journal of Mathematics and Soft Computing 3 (1), pp. 21-27, (2013).

[5] P. Jeyanthi and A. Sudha, Total Edge Irregularity Strength of Disjoint Union of Wheel Graphs, Electron. Notes in Discrete Math., 48, pp. 175-182, (2015).