Generalized Ulam—Hyers stabilities of quartic derivations on Banach algebras

  • Madjid Eshaghi Gordji Semnan University.
  • N. Ghobadipour Urmia University.
Palabras clave: Banach algebra, quartic functional equation, quartic derivation, Hyer-Ulam-Rassias stability, álgebra de Banach, ecuación funcional cuártica, derivación cuártica, estabilidad de Hyer-Ulam-Rassias.

Resumen

Let A , B be two rings. A mapping δ : A → B is called quartic derivation, if δ is a quartic function satisfies δ(ab) = a4δ(b) + δ(a)b4 for all a, b ∈ A. The main purpose of this paper to prove the generalized Hyers—Ulam—Rassias stability of the quartic derivations on Banach algebras.

Biografía del autor

Madjid Eshaghi Gordji, Semnan University.
Department of Mathematics.
N. Ghobadipour, Urmia University.
Department of Mathematics.

Citas

Abbaspour Tabadkan, Gh., Rahmani, A. Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stability of generalized quadratic functional equations, Advances in Applied Mathematical Analysis, Research India Publications, 4(1), pp. 31-38, (2009).

Abbaszadeh, S. Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 100—124,(2010).

Badora, R. On approximate derivations, Math. Inequal. Appl. 9 (2006) 167—173.

Bavand Savadkouhi, M., Gordji, M. E., Rassias, J. M., Ghobadipour, N. Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50, 042303 (2009), 9 p.

Belaid, B., Elhoucien, E. Ulam-Gavruta-Rassias stability of the Pexider functional equation, Intern. J. Math. Sta. 7(Fe07), pp. 27-39, (2007).

Belaid, B., Elhoucien, E., Rassias, J. M. The superstability of d'Alembert's functional equation on the Heisenberg group, Appl. Math. Lett. 23, 105-109, (2010).

Cao, H.X., Lv, J. R., Rassias, J.M. Superstability for generalized module left derivations and generalized module derivations on a banach module (I),Journal of Inequalities and Applications, Vol. 2009, Art. ID 18020, pp. 1-10, [Doi:10.1155/2009/718020].

Cao, H. X. , Lv, J. R., Rassias, J. M., Superstability for generalized module left derivations and generalized module derivations on a banach module (II), J. Pure & Appl. Math. JIPAM 10, Issue 2, pp. 1-8, (2009).

Czerwik, S. Stability of functional equations of Ulam-Hyers-Rassias type. Hadronic Press, Palm Harbor, Florida, (2003).

Eshaghi Gordji, M., Bavand Savadkouhi, M. On approximate cubic homomorphisms, Advance difference equations, Vol. 2009, Article ID 618463, 11 pages, [Doi:10.1155/2009/618463].

Eshaghi Gordji, M., Rassias, J. M., Ghobadipour, N. Generalized Hyers— Ulam stability of generalized (n,k)—derivations, Abstract and Applied Analysis,, pp. 1—8, (2009).

Eshaghi Gordji, M., Karimi, T., Kaboli Gharetapeh, S. Approximately n— Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Vol. 2009, Article ID 870843, 8 p.

Eshaghi Gordji, M., Ghaemi, M. B., Kaboli Gharetapeh, S., Shams, S., Ebadian, A. On the stability of J∗−derivations, Journal of Geometry and Physics 60 (3), pp. 454—459, (2010).

Eshaghi Gordji, M., Ghobadipour, N. Stability of (α, β, γ)−derivations on Lie C∗−algebras, International Journal of Geometric Methods in Modern Physics, Vol. 27, N 7, pp. 1-10, (2010), [Doi: 10.1142/S0219887810004737].

Eshaghi Gordji, M., Kaboli Gharetapeh, S., Karimi , T., Rashidi. E., Aghaei, M. Ternary Jordan derivations on C∗−ternary algebras, Journal of Computational Analysis and Applications, Vol.12, No.2, pp. 463—470, (2010).

Eshaghi Gordji, M., Moslehian, M. S. A trick for investigation of approximate derivations, Math. Commun. 15, No. 1, pp. 99-105, (2010).

Eshaghi Gordji, M., Khodaei, H. On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abstract and Applied Analysis, Vol. 2009, Art. ID 923476, 1-11, [Doi:10.1155/2009/923476].

Farokhzad, R., Hosseinioun, S. A. R. Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl. 1, 1, pp. 42—53, (2010).

Faiziev, V., Rassias, J. M. Stability of generalized additive equations on Banach spaces and groups, Journal of Nonlinear Functional Analysis and Differential Equations, JNFADE: 1, No. 2, 153-173, 2007).
Gajda, Z. On stability of additive mappings, Internat. J. Math. Math. Sci. 14, pp. 431-434, (1991).

Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184, pp. 431-436, (1994).

Gavruta, P. An answer to a question of John M. Rassias concerning the stability of Cauchy equation, in: Advances in Equations and Inequalities, in: Hadronic Math. Ser., pp. 67-71, (1999).

Gavruta. P., L. Gavruta, L. A new method for the generalized Hyers-UlamRassias stability, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 11—18, (2010).

Gordji, M. E., Kaboli Gharetapeh, S., Rassias, J. M., Zolfaghari, S. Solution and Stability of a Mixed type Additive, Quadratic, and Cubic functional equation, Advances in Difference Equations, Vol. 2009, Art. ID 826130, 1-17, [Doi:10.1155/2009/826130].

Gordji, M. E., Najati, A. Approximately J∗-homomorphisms: A fixed point approach, Journal of Geometry and Physics 60, pp. 809—814, (2010).

Gordji , M. E., Rassias, J. M., Savadkouhi, M. B. Approximation of the Quadratic and Cubic functional equations in RN-spaces, European Journal of Pure and Applied Mathematics, 2, No.4, p. 494-507, (2009).

Gordji, M.E., Zolfaghari, S., Rassias, J. M., Savadkouhi, M. B. Solution and Stability of a Mixed type Cubic and Quartic functional equation in Quasi-Banach spaces, Abstr. Appl.Anal., Vol. 2009, Art. ID 417473, 1-14, [Doi:10.1155/2009/417473].

Hyers, D.H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27, pp. 222—224, (1941).

Isac, G., Rassias, Th. M. On the Hyers-Ulam stability of additive mappings, J. Approx. Theorey 72, pp. 131-137, (1993).

K. Jun, K., Kim, H., Rassias, J. Extended Hyers-Ulam stability for Cauchy-Jensen mappings, J. Diff. Equ. Appl. 2007, 1-15, [Doi:10.1080/10236190701464590].

Khodaei, H., Rassias, Th. M. Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1, 1, pp. 22—41, (2010).

Kim, H. M., Rassias, J. M., Cho, Y. S., Stability Problem of Ulam for Euler-Lagrange Quadratic Mappings, Journal of Inequalities and Appl., Vol., ID 10725, pp. 1-15, (2007).

Kominek, Z. On a local stability of the Jensen functional equation, Demonstratio Math. 22, pp. 499-507; (1989).

Lee, Y., Chung, S., Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Letters, [Doi: 10.1016/j.aml.2007.07.022], pp.1-7.

Miura, T., Hirasawa, G., Takahasi, S. E. A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319, pp. 522—530, (2006).

Nakmahachalasint, P. On the generalized Ulam-Gavruta-Rassias stability of mixed-type linear and Euler-Lagrange-Rassias functional equations, Intern. J. Math. Math. Sci. (IJMMS), Art. ID 63239, 1-10; (2007).

Nakmahachalasint, P. Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stabilities of additive functional equation in several variables ,International Journal of Mathematics and Mathematical Sciences, Vol. 2007, Art. ID 13437, 6 p., [Doi:10.1155/2007/13437].

Park, C., Najati, A. Homomorphisms and derivations in C*-algebras, Abstr. Appl. Anal., Article ID 80630, (2007).

Park, C. Lie ∗—homomorphisms between Lie C*—algebras and Lie ∗— derivations on Lie C*—algebras, J. Math. Anal. Appl. 293, pp. 419—434, (2004).

Park, W. G., Bae, J. H. On a bi-quadratic functional equation and its stability Nonlinear Anal. 62, no. 4, pp. 643—654, (2005).

Park, C., Gordji, M. E., Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. 51, 044102 (2010) (7 p.).

Park, C., Najati, A. Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. 1, 2, pp. 54—62, (2010).

Park, C., Rassias, J. M. Stability of the Jensen-type functional equation in C*-algebras: A Fixed Point Approach, Abstract and Applied Analysis, Vol. 2009, Art. ID 360432, 1-17, [Doi:10.1155/2009/360432].

Park, C., Rassias, Th. M. Isomorphisms in unital C∗-algebras, Int. J. Nonlinear Anal. Appl. 1 (2010), 2, 1—10.

Pietrzyk, A. Stability of the Euler-Lagrange-Rassias functional equation, Demonstratio Math. 39, 523-530, (2006).

Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46, pp. 126—130, (1982).

Rassias, J. M. On Approximation of approximately linear mappings by linear mappings, Bull. Sc. Math. 108, pp. 445—446, (1984).

Rassias, J. M. On a new approximation of approximately linear mappings by linear mappings, Discuss. Math. 7, pp. 193—196, (1985).

Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory. 57 (3), pp. 268—273, (1989).

Rassias, J. M. On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (2), pp. 185-190, (1992).

Rassias, J. M. Solution of a stability problem of Ulam, Discuss. Math. 12, pp. 95-103, (1992).

Rassias, J. M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28, pp. 231-235, (1994).

Rassias, J. M. On the stability of a multi-dimensional Cauchy type functional equation, in: Geometry, Analysis and Mechanics, World Sci. Publ., pp. 365— 376, (1994).

Rassias, J. M. Complete solution of the multi-dimensional problem of Ulam, Discuss. Math. 14, pp. 101-107, (1994).

Rassias, J. M., Lee, J., Kim, H. M. Refined Hyers-Ulam stability for Jensen type mappings, Journal of the Chungcheong Mathematical Society, 22, No. 1, pp. 101-116, (2009).

Rassias, J. M., Rassias, M. J. On some approximately quadratic mappings being exactly quadratic , J. Ind. Math. Soc. 69, pp. 155-160, (2002).

Rassias, Th. M. The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2), pp. 352-378, (2000).

Rassias, Th. M. Functional equations, Inequalities and applications, Kluwer Academic Publishers, Dordrecht, Boston and London, (2003).

Rassias, Th. M., On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43(3), pp. 89-124, (1998).

Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72, pp. 297-300, (1978).

Ravi, K., Arunkumar, M., Rassias, J. M. Ulam stability for the orthogonally general Euler—Lagrange type functional equation, Int. J. Math. Stat. 3, pp. 36-46, (2008).

Semrl, P. The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory, 18, pp. 118—122, (1994).

Sibaha, M. A., Bouikhalene, B., Elquorachi, E. Ulam—Gavruta—Rassias stability for a linear functional equation, in: Euler’s Issue FIDA, in: IJAMAS, vol. 7, pp. 157—167, (2007).

Singer, I. M., Wermer, J. Derivations on commutative normed algebras, Math. Ann. 129, pp. 260—264, (1955).

Ulam, S. M. A Collection of the Mathematical Problems, Interscience Publ., New York, (1940).
Publicado
2011-01-07
Cómo citar
Eshaghi Gordji, M., & Ghobadipour, N. (2011). Generalized Ulam—Hyers stabilities of quartic derivations on Banach algebras. Proyecciones. Journal of Mathematics, 29(3), 209-226. https://doi.org/10.4067/S0716-09172010000300005
Sección
Artículos