Lacunary generalized difference statistical convergence in random 2-normed spaces

Bipan Hazarika

Resumen


Recently in [22], Mursaleen introduced the concept of statistical convergence in random 2-normed spaces. In this paper, we define and study the notion of lacunary An-statistical convergence and lacunary An-statistical Cauchy sequences in random 2-normed spaces using la-cunary density and prove some interesting theorems.

Palabras clave


Statistical convergence; lacunary sequence; difference sequence; t-norm; 2-norm; random 2-normed space; convergencia estadística; secuencia lagunaria; secuencia diferencial; t-normadoM 2-normado; espacio aleatorio 2-normado.

Texto completo:

PDF

Referencias


C. Alsina, B. Schweizer, A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl. 208, pp. 446452, (1997).

H. Cakalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26 (2), pp. 113-119, (1995), MR 95m:40016.

J.Connor, M.A. Swardson, Measures and ideals of C∗(X) , Ann. N.Y. Acad.Sci. 704,, pp. 80-91, (1993).

A. Esi, M. K. Ozdemir, Generalized ∆m-Statistical convergence in probabilistic normed space, Jour. Comput. Anal. Appl., 13(5), pp. 923-932, (2011).

A.Esi, M. K. Ozdemir, On lacunary statistical convergence in random n-normed space, Annals of Fuzzy Mathematics and Informatics, (To appear)

M.Et and F.Nuray, ∆m-Statistical convergence, Indian J.Pure Appl.Math., 32(6), pp. 961-969, (2001).

H. Fast, Sur la convergence statistique, Colloq. Math. 2, pp. 241-244, (1951).

J. A. Fridy, On statistical convergence, Analysis, 5, pp. 301-313, (1985).

J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160, No. 1, pp. 43-51, (1993), MR 94j:40014.

J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173, pp. 497-504, (1993), MR 95f :40004.

S. Gahler, 2-metrische Raume and ihre topologische Struktur, Math. Nachr. 26, pp. 115-148, (1963).

S. Gahler, Linear 2-normietre Raume, Math. Nachr. 28, pp. 1-43, (1965).

I . Golet¸ , On probabilistic 2-normed spaces, Novi Sad J. Math. 35, pp. 95102, (2006).

M.Gurdal and S. Pehlivan, Statistical convergence in 2-normed spaces, South. Asian Bull. Math.33, pp. 257-264, (2009).

M. Gurdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2 (1), pp. 107113, (2004).

B. Hazarika, E. Savas, Lacunary statistical convergence in random 2-normed space, (communicatted).

S. Karakus, Statistical convergence on probabilistic normed spaces, Math. Commun. 12, pp. 1123, (2007).

S. Karakus, K. Demirci and O. Duman, Statistical convergence on intuitionistic fuzzy normed spaces, Chaos, Solitons and Fractals, 35, pp. 763-769, (2008).

J. Li, Lacunary statistical convergence and inclusion properties between lacunary methods, Internat. J. Math. Math. Sci. 23(3), pp. 175180, (2000), S0161171200001964.

K. Menger, Statistical metrics, Proc. Natl. Acad. Sci. USA 28, pp. 535537, (1942).

H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., 347(5), pp. 1811-1819, (1995).

M. Mursaleen, Statistical convergence in random 2-normed spaces, Acta Sci. Math.(Szeged), 76(1-2), pp. 101-109, (2010).

M. Mursaleen and S.A. Mohiuddine, On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space, Jour. Comput. Appl. Math., 233(2), pp. 142-149, (2009).

S.A.Mohiuddine, M. Aiyub, Lacunary statistical convergence in random 2-normed space, Appl.Math.Inf.Sci., 6(3), pp. 581-585, (2012).

M. R. S. Rahmat, Lacunary Statistical Convergence on Probabilistic Normed Spaces, Int. J. Open Problems Compt. Math., 2(2), pp. 285-292, (2009).

T. Salat, On statistical convergence of real numbers, Math. Slovaca, 30, pp. 139-150, (1980).

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66, pp. 361-375, (1959).

B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10, pp. 313334, (1960).

B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North Holland, New York- Amsterdam-Oxford, (1983).

C. Sempi, A short and partial history of probabilistic normed spaces,Mediterr. J. Math. 3, pp. 283-300, (2006).

A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk SSSR 149(, pp. 280-283, (1963).




DOI: http://dx.doi.org/10.4067/S0716-09172012000400006

Enlaces refback

  • No hay ningún enlace refback.