Generalized Ulam—Hyers—Rassias stability of a Cauchy type functional equation

Mohamed Akkouchi

Resumen


Using the alternative fixed point theorem, we establish the generalized Hyers—Ulam—Rassias stability of a Cauchy type functional equation
for functions takin values in arbitrary complete (real or complex)
β-normed spaces.

Palabras clave


Alternative fixed point ; Generalized Hyers—Ulam—Rassias stability ; Cauchy type functional equation ; Additive mappings ; β-normed spaces.

Texto completo:

PDF

Referencias


1. M. Akkouchi, Stability of certain functional equations via a fixed point of Ciric, Filomat, 25(2), pp. 121-127, (2011).

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, pp. 64-66, (1950).

J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112 (3), pp. 729-732, (1991).

D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16, pp. 385—397, (1949).

L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara, 41, pp. 25—48, (2003).

L. Cadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math., 4 (2003), Art. ID 4.

L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische Berichte, 346, pp. 43—52, (2004).

L. Cadariu and V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics, 23, pp. 63—72, (2007).

P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984) 76-86. MR0758860 (86d:39016).

S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type, Hadronic Press, (2003).

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74, pp. 305-309, (1968).

[3] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50, pp. 143-190, (1995).

Z. Gajda, On stability of additive mappings, Internat. J. Math.

Math. Sci., 14, pp. 431-434, (1991).

D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27, pp. 222-224, (1941).

D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional Equations in Several Variables, Birkhauser, Boston, Basel, Berlin, (1998).

G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of -additive mappings, J. Approx. Theory, 72, pp. 131-137, (1993).

S-M Jung, T-S Kim and K-S Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc., 43(3), pp. 531-541, (2006).

[14] Zs. Páles, Generalized stability of the Cauchy functional equation, Aequationes Math., 56(3), pp. 222-232, (1998).

C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in C∗−algebras: a fixed point approach, Abstract and Applied Analysis Volume 2009, Article ID 360432, 17 pages.

V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4, pp. 91—96, (2003).

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72, pp. 297-300, (1978).

J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57, No. 3, pp. 268-273, (1989).

Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62 (2000), pp. 23-130. MR1778016 (2001j:39042).

Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), pp. 264-284. MR1790409 (2003b:39036).

Th. M. Rassias, The problem of S.M.Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2), pp. 352-378, (2000).

I. A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, (1979) (in Romanian).

[22] L. Székelyhidi, On a stability theorem, C. R. Math. Rep. Acad. Sci. Canada, 3(5), pp. 253-255, (1981).

[23] L. Székelyhidi, The stability of linear functional equations, C. R. Math. Rep. Acad. Sci. Canada, 3(2), pp. 63-67, (1981).

[24] L. Székelyhidi, Ulam’s problem, Hyers’s solution and to where they led, in Functional Equations and Inequalities, Th. M. Rassias (Ed.), Vol. 518 of Mathematics and Its Applications, Kluwer Acad. Publ., Dordrecht, pp. 259-285, (2000).

S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science ed. Wiley, New York, (1940).




DOI: http://dx.doi.org/10.4067/S0716-09172013000100002

Enlaces refback

  • No hay ningún enlace refback.