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Abstract

A vertex v of a graph G = (V,E) is said to ve-dominate every
edge incident to v, as well as every edge adjacent to these incident
edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E
is ve-dominated by at least one vertex of S. The minimum cardinality
of a vertex-edge dominating set of G is the vertex-edge domination
number γve(G) . In this paper we prove (γt(T )− +1)/2 ≤ γve(T) ≤
(γt(T)+ −1)/2 and characterize trees attaining each of these bounds.
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1. Introduction

Let G = (V,E) be a graph. By the neighborhood of a vertex v of G we
mean the set NG(v) = {u ∈ V (G):uv ∈ E(G)}. The degree of a vertex
v, denoted by dG(v), is the cardinality of its neighborhood. By a leaf we
mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. The path on n vertices we denote by Pn. Let T be a tree, and
let v be a vertex of T . We say that v is adjacent to a path Pn if there is
a neighbor of v, say x, such that the subtree resulting from T by removing
the edge vx and which contains the vertex x as a leaf, is a path Pn.

A subset D ⊆ V (G) is a dominating set, abbreviated DS, of G if every
vertex of V (G)\D has a neighbor in D. The domination number of a graph
G, denoted by γ(G), is the minimum cardinality of a dominating set of G.
A subset D ⊆ V (G) is a total dominating set, abbreviated TDS, of G if
every vertex of V (G) has a neighbor in D. The total domination number
of a graph G, denoted by γt(G), is the minimum cardinality of a total
dominating set of G. A total dominating set of G of minimum cardinality
is called a γt(G)-set. For more details on total domination, see [2].

An edge e ∈ E(G) is vertex-edge dominated (ve-dominated) by a vertex
v ∈ V (G) if e is incident to v, or e is adjacent to an edge incident to v.
A subset D ⊆ V (G) is a vertex-edge dominating set, abbreviated VEDS,
of G if every edge of G is vertex-edge dominated by a vertex of D. The
vertex-edge domination number of G, denoted by γve(G), is the minimum
cardinality of a vertex-edge dominating set of G. A vertex-edge dominat-
ing set of G of minimum cardinality is called a γve(G)-set. Vertex-edge
domination in graphs was introduced in [5], and further studied in [1, 3, 4].

In [4], trees with equal domination number and vertex-edge domination
number are characterized. Here, we prove (γt(T ) − + 1)/2 ≤ γve(T) ≤
(γt(T) + − 1)/2 and characterize trees attaining each of these bounds.

2. Main Results

The one vertex graph does not have total dominating set and vertex-edge
dominating set, in this paper, by a tree we mean only a connected graph
with no cycle, and which has at least two vertices.

We begin with the following observations:

Observation 1. Every support vertex of a graph G is in every TDS of
graph G.
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Observation 2. Let G be a graph and u ∈ V (G). Let the vertex u be
adjacent to two paths vw and xy. Let v and x be adjacent to u. Let
H = G− {x, y}. Then γt(G) = γt(H) + 1 and γve(G) = γve(H).

Proof. Let D be a γt(G)-set. By observation 1, the vertices v, x ∈ D. To
dominate the vertices v and x, the vertex u ∈ D. It is easy to see that
D \ {x} is a TDS of the graph H. Thus γt(H) ≤ γt(G) − 1. Let D0 be
a γt(H)-set. By observation 1, the vertex v ∈ D0. To dominate v, the
vertex u ∈ D0. It is clear that D0 ∪ {x} is a TDS of the graph G. Thus
γt(G) ≤ γt(H) + 1. We get γt(G) = γt(H) + 1.

Let D be a γve(T )-set. To dominate the edges xy and vw, the vertex
u ∈ D. ObviouslyD is a VEDS of the graphH. Thus γve(H) ≤ γve(G). Let
D0 be a γve(H)-set. To dominate the edge vw, the vertex u ∈ D0. Clearly
the vertex u dominates the edges ux and xy in the graph G. The set D0 is
a VEDS of the graph G. Thus γve(G) ≤ γve(H). We get γve(G) = γve(H).
2

Observation 3. LetH be a graph with a leaf u adjacent to a weak support
vertex v. Let G be a graph obtained from H by joining a path P4 : xyzw
to the leaf u. Let u be adjacent to x. Then γt(G) = γt(H) + 2 and
γve(G) = γve(H) + 1.

Proof. Let D0 be a γt(H)-set. It is obvious that D0∪{z, y} is a TDS of the
graph G. Thus γt(G) ≤ γt(H) + 2. Let D be a γt(G)-set. By observation
1, z ∈ D. To dominate z, the vertex y ∈ D. It is clear that D \ {y, z} is a
TDS of the graph H. Thus γt(H) ≤ γt(G)− 2. We get γt(G) = γt(H) + 2.

Let D0 be a γve(H)-set. It is clear that D0∪{y} is a VEDS of the graph
G. Thus γve(G) ≤ γve(H) + 1. Let D be a γve(G)-set. To dominate the
edge zw, the vertex y ∈ D. It is obvious that D \ {y} is a VEDS of the
graph H. Thus γve(H) ≤ γve(G)− 1. We get γve(H) = γve(G)− 1. 2

First we show that if T is a nontrivial tree of order n with leaves,
then γve(T ) is bounded below by (γt(T ) − + 1)/2. For the purpose of
characterizing the trees attaining this bound we introduce a family T of
trees T = Tk that can be obtained as follows. Let T1 = P5. If k is a
positive integer, then Tk+1 can be obtained recursively from Tk by one of
the following operations.

• Operation O1: Attach a path P2 by joining one of its vertices to a
vertex of Tk adjacent to a path P2.
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• Operation O2: Attach a path P4 by joining one of its leaves to a leaf
of Tk whose support vertex is weak.

Lemma 4. If T ∈ T , then γve(T ) = (γt(T )− + 1)/2.

Proof. We use the induction on the number k of operations performed
to construct the tree T . If T1 = P5, then γve(T1) = 1 and γt(T1) = 3. It
can be verified that γve(T1) = (γt(T1)− + 1)/2 is satisfied. Let k ≥ 2 be
an integer. Assume that the result is true for every tree T 0 = Tk of the
family T constructed by k − 1 operations. Let 0 be the number of leaves
of the tree T 0. Let T = Tk+1 be a tree of the family T constructed by k
operations.

First assume that T is obtained from T 0 by operation O1. Let x be a
vertex to which a path P2 = yz is attached. Let x be adjacent to y. Let
uv be a path different from yz attached at x. Let u be adjacent to x. By
observation 2, γt(T ) = γt(T

0) + 1 and γve(T ) = γve(T
0). It is easy to see

0 = − 1. We get (γt(T ) − + 1)/2 = (γt(T
0) + 1 − ( 0 + 1) + 1)/2 =

γve(T
0) = γve(T).

Now assume that T is obtained from T 0 by operation O2. Let x be
a leaf to which a path P4 : uvwz is attached. Let x be adjacent to u.
By observation 3, γt(T ) = γt(T

0) + 2 and γve(T
0) = γve(T ) − 1. It is

easy to see 0 = . We get (γt(T ) − + 1)/2 = (γt(T
0) + 2 − 0 + 1)/2 =

(γt(T
0)− 0 + 1)/2 + 1 = γve(T

0) + 1 = γve(T). 2

Theorem 5. If T is a tree with leaves then γve(T ) ≥ (γt(T ) − + 1)/2
with equality if and only if T ∈ T .

Proof. If diam(T ) = 1, then T = P2. We have (γt(T ) − + 1)/2 =
(2− 2 + 1)/2 < 1 = γve(T). If diam(T ) = 2, then T is a star K1,n−1. We
have (γt(T ) − + 1)/2 = (2 − (n − 1) + 1)/2 = (4 − n)/2 < 1 = γve(T)
as n ≥ 3. Now assume that diam(T ) ≥ 3. Thus the order n of the tree
is at least four. We prove the result by induction on n. Assume that the
theorem is true for every tree T 0 of order n0 < n with 0 leaves.

First assume that some support vertex of T , say x, is strong. Let y and
z be two leaves adjacent to x. Let T 0 = T − y. Let D0 be a γt(T 0)-set. By
observation 1, x ∈ D0. To dominate x, a vertex in NG(x) is in D0. Clearly
the vertex x dominates y in the tree T . The set D0 is a TDS of the tree T .
Thus γt(T ) ≤ γt(T

0). It is clear that 0 = −1. Let D be a γve(T )-set. It is
obvious that D is a VEDS of the tree T 0. Thus γve(T 0) ≤ γve(T ). We now
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get (γt(T ) − + 1)/2 ≤ (γt(T0) − 0 − 1 + 1)/2 = γve(T
0) − 1/2 < γve(T).

Henceforth, every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t
be a leaf at maximum distance from r, v be the parent of t, and let u be
the parent of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent
of u. If diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then
let e be the parent of d. By Tx we denote the subtree induced by a vertex
x and its descendants in the rooted tree.

From the last but one paragraph, we get dT (v) = 2. Assume that among
the children of u there is a support vertex, say x, other than v. Let y be
the leaf adjacent to x. Let T 0 = T − Tx. We have

0 = − 1. Let D0 be a
γt(T

0)-set. By observation 1, v ∈ D0. To dominate v, the vertex u ∈ D0.
Clearly D0 ∪ {x} is a TDS of the tree T . Thus γt(T ) ≤ γt(T

0) + 1. Let
D be a γve(T )-set. To dominate the edge vt and xy, the vertex u ∈ D.
Clearly D is a VEDS of the tree T 0. Thus γve(T 0) ≤ γve(T ). We now get
(γt(T ) − + 1)/2 ≤ (γt(T0) + 1 − 0 − 1 + 1)/2 = γve(T

0) ≤ γve(T). This
implies that (γt(T

0)− 0 + 1)/2 = γve(T
0). By the induction hypothesis we

have T 0 ∈ T . The tree T can be obtained from T 0 by operation O1. Thus
T ∈ T .

Assume that among the children of u, other than v, there is a leaf x. Let
T 0 = T − x. We have = 0 + 1. Let D0 be a γt(T 0)-set. By observation 1,
v ∈ D0. To dominate v, the vertex u ∈ D0. Clearly D0 is a TDS of the tree
T . Thus γt(T ) ≤ γt(T

0). Let D be a γve(T )-set. To dominate the edge vt,
the vertex u ∈ D. It is easy to see that D is a VEDS of the tree T 0. Thus
γve(T

0) ≤ γve(T ). We now get (γt(T )− +1)/2 ≤ (γt(T0)− 0− 1+1)/2 =
γve(T

0)− 1/2 < γve(T).

We assume that dT (u) = 2. Now assume that among the children
of w, other than u, there is a vertex x such that the distance of w to
the most distant vertex of Tx is three. It suffices to consider that w is
adjacent to a path P3 : xyz. Let T 0 = T − Tu. We have = 0 + 1.
Let D0 be a γt(T

0)-set. It is easy to see that D0 ∪ {u, v} is a TDS of the
tree T . Thus γt(T ) ≤ γt(T

0) + 2. Let D be a γve(T )-set. To dominate
the edges vt and yz, the vertices u, x ∈ D. It is easy to observe that
D \ {u} is a VEDS of the tree T 0. Thus γve(T 0) ≤ γve(T )− 1. We now get
(γt(T )− + 1)/2 ≤ (γt(T0) + 2− 0 − 1 + 1)/2 = γve(T

0) + 1/2 < γve(T).

Assume that among the children of w, other than u, there is a vertex x
such that the distance of w to the most distant vertex of Tx is two. It suffices
to consider that w is adjacent to a path P2 : xy. Let T

0 = T −Tu. We have
= 0 + 1. Let D0 be a γt(T

0)-set. It is easy to observe that D0 ∪ {u, v}
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is a TDS of the tree T . Thus γt(T ) ≤ γt(T
0) + 2. Let D be a γve(T )-set.

To dominate the edges vt and yx, the vertices u,w ∈ D. It is clear that
D \ {u} is a VEDS of the tree T 0. Thus γve(T 0) ≤ γve(T )− 1. We now get
(γt(T )− + 1)/2 ≤ (γt(T0) + 2− 0 − 1 + 1)/2 = γve(T

0) + 1/2 < γve(T).

Assume that among the children of w, other than u, there is a leaf x. Let
T 0 = T−Tw. We have = 0+2. LetD0 be a γt(T 0)-set. It is easy to see that
D0 ∪ {u, v, w} is a TDS of the tree T . Thus γt(T ) ≤ γt(T

0)+ 3. Let D be a
γve(T )-set. To dominate the edges vt, uv, uw,wx and wd, the vertex u ∈ D.
It is clear that D\{u} is a VEDS of the tree T 0. Thus γve(T 0) ≤ γve(T )−1.
We now get (γt(T )− +1)/2 ≤ (γt(T0)+3− 0−2+1)/2 = γve(T

0)+1/2 <
γve(T).

Assume dT (d) ≥ 3. Let T 0 = T − Tw. We have = 0 + 1. Let
D0 be a γt(T

0)-set. It is clear that D0 ∪ {u, v} is a TDS of the tree T .
Thus γt(T ) ≤ γt(T

0) + 2. Let D be a γve(T )-set. To dominate the edges
vt, uv, uw and wd, the vertex u ∈ D. It is clear that D \ {u} is a VEDS of
the tree T 0. Thus γve(T 0) ≤ γve(T ) − 1. We now get (γt(T ) − + 1)/2 ≤
(γt(T

0) + 2− 0 − 1 + 1)/2 = γve(T
0) + 1/2 < γve(T).

Suppose d = r, we have T = P5 = rwuvt. Then (γt(T ) − + 1)/2 =
(3− 2+ 1)/2 = 1 = γve(T). Thus T ∈ T . Now assume that dT (d) = 2. Let
T 0 = T − Tw. We have = 0. Placing the arguments as in the previous
case, we get (γt(T )− +1)/2 ≤ (γt(T0)+2− 0+1)/2 ≤ γve(T

0)+1 ≤ γve(T).
This implies that (γt(T

0)− 0+1)/2 = γve(T
0). By the inductive hypothesis

T 0 ∈ T . The tree T can be obtained from T 0 by operation O2. Thus T ∈ T .
2

We now show that if T is a nontrivial tree of order n with leaves,
then γve(T ) is bounded above by (γt(T ) + − 2)/2. For the purpose of
characterizing the trees attaining this bound we introduce a family F of
trees T = Tk that can be obtained as follows. Let T1 ∈ {P2, P3, P4}. If
k is a positive integer, then Tk+1 can be obtained recursively from Tk by
operation O2.

It is easy to see that F consists of paths Pn where n 6= 4k+1 for positive
integer k.

Lemma 6. If T ∈ T , then γve(T ) = (γt(T ) + − 2)/2.

Proof. We use the induction on the number k of operations performed to
construct the tree T . If T1 ∈ {P2, P3, P4}, then γve(T1) = 1 and γt(T1) = 2.
It can be verified that γve(T1) = (γt(T1) + − 2)/2 is satisfied. Let k ≥ 2
be an integer. Assume that the result is true for every tree T 0 = Tk of the



Total domination and vertex-edge domination in trees 301

family F constructed by k − 1 operations. Let 0 be the number of leaves
of the tree T 0. Let T = Tk+1 be a tree of the family F constructed by k
operations.

Assume that T is obtained from T 0 by operation O2. Let x be a leaf to
which a path P4 : uvwz is attached. Let x be adjacent to u. By observation
3, γt(T ) = γt(T

0) + 2 and γve(T
0) = γve(T )− 1. It is easy to see 0 = . We

get (γt(T ) + − 2)/2 = (γt(T0) + 2 + 0 − 2)/2 = (γt(T0) + 0 − 2)/2 + 1 =
γve(T

0) + 1 = γve(T). 2

Theorem 7. If T is a tree with leaves then γve(T ) ≤ (γt(T ) + − 2)/2
with equality if and only if T ∈ F .

Proof. If diam(T ) = 1, then T = P2. We have (γt(T ) + − 2)/2 =
(2 + 2 − 2)/2 = 1 = γve(T). Thus T ∈ F . If diam(T ) = 2. If T is a
path P3, we have (γt(T ) + − 2)/2 = (2 + 2 − 2)/2 = 1 = γve(T). Thus
T ∈ F . T is a star K1,n−1 other than P3. We have (γt(T ) + − 2)/2 =
(2 + (n− 1) − 2)/2 = (n− 1)/2 > 1 = γve(T) as n > 3. Now assume that
diam(T ) ≥ 3. Thus the order n of the tree is at least four. We prove the
result by induction on n. Assume that the theorem is true for every tree
T 0 of order n0 < n with 0 leaves.

First assume that some support vertex of T , say x, is strong. Let y
and z be two leaves adjacent to x. Let T 0 = T − y. We have 0 = − 1.
Let D0 be a γve(T

0)-set. The vertex which dominates the edge xz in the
tree T 0 dominates the edge xy in the tree T . It is obvious that D0 is a
VEDS of the tree T . Thus γve(T ) ≤ γve(T

0). Let D be a γt(T )-set. By
observation 1, x ∈ D. To dominate x, a vertex in NG(x) is in D. If y ∈ D
then (D \ {y}) ∪ {z} is a TDS of the tree T 0. Thus γt(T 0) ≤ γt(T ). We
now get γve(T ) ≤ γve(T

0) ≤ (γt(T 0) + 0 − 2)/2 ≤ (γt(T) + − 1− 2)/2 <
(γt(T) + − 2)/2. Henceforth, every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T ). Let t
be a leaf at maximum distance from r, v be the parent of t, and let u be
the parent of v in the rooted tree. If diam(T ) ≥ 4, then let w be the parent
of u. If diam(T ) ≥ 5, then let d be the parent of w. If diam(T ) ≥ 6, then
let e be the parent of d. By Tx we denote the subtree induced by a vertex
x and its descendants in the rooted tree.

Assume that among the children of u, other than v, there is a leaf x.
Let T 0 = T − x. We have = 0 + 1. Let D0 be a γve(T 0)-set. To dominate
the edge vt, the vertex u ∈ D0. Clearly D0 is a VEDS of the tree T as u
dominates the edge ux. Thus γve(T ) ≤ γve(T

0). Let D be a γt(T )-set. By
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observation 1, the vertices u, v ∈ D. It is obvious thatD is a TDS of the tree
T 0. Thus γt(T 0) ≤ γt(T ). We get γve(T ) ≤ γve(T

0) ≤ (γt(T 0) + 0 − 2)/2 ≤
(γt(T) + − 1− 2)/2 < (γt(T) + − 2)/2.

Assume that among the children of u there is a support vertex, say
x, other than v. Let y be the leaf adjacent to x. Let T 0 = T − Tx. We
have 0 = − 1. Let D0 be a γve(T

0)-set. To dominate the edge vt, the
vertex u ∈ D0. The vertex u dominates the edges ux and xy in the tree
T . Clearly D0 is a VEDS of the tree T . Thus γve(T ) ≤ γve(T

0). Let D be
a γt(T )-set. By observation 1, the vertices v, x ∈ D. To dominate v and
x, the vertex u ∈ D. It is obvious that D \ {x} is a TDS of the tree T 0.
Thus γt(T

0) ≤ γt(T )− 1. We get γve(T ) ≤ γve(T
0) ≤ (γt(T 0) + 0 − 2)/2 ≤

(γt(T)− 1 + − 1− 2)/2 < (γt(T) + − 2)/2.
We assume that dT (u) = 2. Now assume that among the children of w,

other than u, there is a vertex x such that the distance of w to the most
distant vertex of Tx is three. It suffices to consider that w is adjacent to
a path P3 : xyz. Let T

0 = T − Tu. We have = 0 + 1. Let D0 be a
γve(T

0)-set. It is obvious that D0 ∪ {u} is a VEDS of the tree T . Thus
γve(T ) ≤ γve(T

0) + 1. Let D be a γt(T )-set. By observation 1, the vertices
y, v ∈ D. To dominate the two vertices y and v the vertices x, u ∈ D. It is
clear thatD\{u, v} is a TDS of the tree T 0. Thus γt(T 0) ≤ γt(T )−2. We get
γve(T ) ≤ γve(T

0)+1 ≤ (γt(T 0)+ 0−2)/2+1 ≤ (γt(T)−2+ −1−2)/2+1 <
(γt(T) + − 2)/2.

Assume that among the children of w, other than u, there is a vertex x
such that the distance of w to the most distant vertex of Tx is two. It suffices
to consider that w is adjacent to a path P2 : xy. Let T

0 = T −Tu. We have
= 0+1. Let D0 be a γve(T 0)-set. It is obvious that D0∪{u} is a VEDS of
the tree T . Thus γve(T ) ≤ γve(T

0)+1. LetD be a γt(T )-set. By observation
1, the vertices x, v ∈ D. To dominate x, v the vertices w, u ∈ D. It is clear
that D \ {u, v} is a TDS of the tree T 0. Thus γt(T 0) ≤ γt(T ) − 2. We get
γve(T ) ≤ γve(T

0)+1 ≤ (γt(T 0)+ 0−2)/2+1 ≤ (γt(T)−2+ −1−2)/2+1 <
(γt(T) + − 2)/2.

Assume that among the children of w, other than u, there is a leaf x.
Let T 0 = T −Tw. We have = 0+2. Let D0 be a γve(T 0)-set. It is obvious
that D0∪{u} is a VEDS of the tree T . Thus γve(T ) ≤ γve(T

0)+1. Let D be
a γt(T )-set. By observation 1, the vertices v,w ∈ D. To dominate v and w,
the vertex u ∈ D. It is obvious that (D\{w, u, v})∪{a} where a is a vertex in
NG(d) other than w is a TDS of the tree T

0. Thus γt(T 0) ≤ γt(T )−2. We get
γve(T ) ≤ γve(T

0)+1 ≤ (γt(T 0)+ 0−2)/2+1 ≤ (γt(T)−2+ −2−2)/2+1 <
(γt(T) + − 2)/2.
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Assume dT (d) ≥ 3. Let T 0 = T − Tw. We have = 0 + 1. Let D0 be
a γve(T

0)-set. It is obvious that D0 ∪ {u} is a VEDS of the tree T . Thus
γve(T ) ≤ γve(T

0) + 1. Let D be a γt(T )-set. By observation 1, v ∈ D.
To dominate v, the vertex u ∈ D. It is clear that D \ {u, v} is a TDS
of the tree T 0. Thus γt(T 0) ≤ γt(T ) − 2. We get γve(T ) ≤ γve(T

0) + 1 ≤
(γt(T

0) + 0 − 2)/2 + 1 ≤ (γt(T)− 2 + − 1− 2)/2 + 1 < (γt(T) + − 2)/2.
Now assume dT (d) = 2. Let T

0 = T − Tw. We have = 0. Let D0 be
a γve(T

0)-set. It is obvious that D0 ∪ {u} is a VEDS of the tree T . Thus
γve(T ) ≤ γve(T

0) + 1. Let D be a γt(T )-set. By observation 1, v ∈ D.
To dominate v, the vertex u ∈ D. It is clear that D \ {u, v} is a TDS
of the tree T 0. Thus γt(T 0) ≤ γt(T ) − 2. We get γve(T ) ≤ γve(T

0) + 1 ≤
(γt(T

0) + 0 − 2)/2 + 1 ≤ (γt(T) − 2 + − 2)/2 + 1 ≤ (γt(T) + − 2)/2.
This implies that γve(T

0) = (γt(T 0)+ 0−2)/2. By the inductive hypothesis
T 0 ∈ T . The tree T can be obtained from T 0 by operation O2. Thus T ∈ T .
2
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