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M. Ech-Chérif El Kettani

University Sidi Mohamed Ben Abdellah, Morocco
Received : April 2018. Accepted : May 2018

Proyecciones Journal of Mathematics
Vol. 38, No 1, pp. 163-175, March 2019.
Universidad Católica del Norte
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Abstract

Let X be a Banach space and let B(X) be the Banach algebra of
all bounded linear operators on X. We characterise surjective (not
necessarily linear or additive) maps φ : B(X) → B(X) such that
F (φ(A) ¦ φ(B)) = F (A ¦B) for all A,B ∈ B(X) where F (A) denotes
any of R(A) or N(A), and A¦B denotes any binary operations A−B,
AB and ABA for all A,B ∈ B(X).
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keywords : Kernel operator, Nonlinear preservers problem, Range
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1. Introduction

Throughout this note, let X be an infinite dimensional Banach space over
the field K( where K is R or C), and B(X) be the Banach algebra of all
bounded linear operators on X. For A ∈ B(X) denote by R(A) the range
of A, N(A) its kernel and A∗ its adjoint acting on the dual space X∗ of X.
The hyper-kernel and the hyper-range of A ∈ B(X) are defined respectively
by

N∞(A) :=
[
n∈N

N(An) and R∞(A) :=
\
n∈N

R(An).

For x ∈ X and f ∈ X∗, the operator of rank at most one is denoted, as
usual, by (x⊗f)(y) := f(y)x for all y ∈ X. The set of all rank one operators
is denoted by F1(X). Preserver problems aim to characterize linear or
nonlinear maps on operator algebras preserving certain properties, subsets,
or relations. It has been initiated in [7], and continuous by several authors,
see for example[1, 2, 3, 5, 6, 8], and the references therein. In [8], the
forms of surjective additive maps φ : B(X)→ B(X) preserving the range’s
codimension or the kernel’s dimension are determined. In particular the
author shows that a surjective additive map φ : B(X)→ B(X) preserves the
range (respectively the kernel) if and only if there is an invertible operator
T ∈ B(X) such that φ(A) = AT (respectively φ(A) = TA) for all A ∈
B(X). Also, in [6] surjective additive maps preserving the hyper range or
the hyper kernel are determined. It is shown that a surjective additive map
φ : B(X) → B(X) satisfies N∞(φ(A)) = N∞(A) (or R∞(φ(A)) = R∞(A)
if and only if there exists a nonzero constant c such that φ(A) = cA for all
A ∈ B(X). Here we propose to treat the nonlinear case of these results. We
will replace the linearity assumption and the preserving property of the map
φ by the weaker conditionR(φ(A)−φ(B)) = R(A−B)(orN(φ(A)−φ(B)) =
N(A−B)). Moreover, we examine more related problems by replacing the
difference in assumption by product or triple product.

2. Preliminaries

In this section, we collect some lemmas that will be used in the proof of
our main results. We begin by giving the range and kernel of rank one
operators.

Lemma 2.1. Let x ∈ X be a nonzero vector and f ∈ X∗ be a nonzero
linear form. We have

1. R(x⊗ f) = span{x} and N(x⊗ f) = N(f).
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2. If f(x) = 1, then N(I −x⊗ f) = R(x⊗ f) = span{x} and R(I −x⊗
f) = N(x⊗ f) = N(f).

3. If f(x) 6= 0 then R∞(x⊗ f) = R(x⊗ f) = span{x}.

Proof. [6, Lemma 2.1] 2

Next result, quoted from [2], characterizes surjective maps preserving
the surjectivity or injectivity of the difference of operators, (i,e) the maps
φ such that A − B injective (resp. surjective) if and only φ(A) − φ(B)
injective (resp. surjective).

Theorem 2.2. Let X be a complex Banach space, and let φ : B(X) →
B(X) be a surjective map. If φ preserves injectivity (resp. surjectivity) of
the difference of operators in both directions. Then one of the following
statements holds.

1. There are a bounded invertible operators T, S : X → X both linear, or
both conjugate linear such that φ(A) = TAS+φ(0) for all A ∈ B(X).

2. There are a bounded invertible operators T : X∗ → X and S : X →
X∗ both linear, or both conjugate linear such that φ(A) = TA∗S +
φ(0) for all A ∈ B(X).

The last case may occur only if X is reflexive.

The following lemma determines the structure of surjective maps pre-
serving the zero product.

Lemma 2.3. LetX be a real or complex Banach space, and let φ : B(X)→
B(X) be a surjective map that satisfies

φ(A)φ(B) = 0 if and only if AB = 0 for all A, B ∈ B(X).(2.1)

Then there is a scalar function ϕ : B(X) → K \ {0} and a bounded
invertible linear, or conjugate linear, operator T : X → X such that φ(A) =
ϕ(A)TAT−1 for all A ∈ F1(X).
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Proof. [4, Lemma 2.2] 2
We close this section with the following result which determines the

structure of surjective maps preserving pairs having zero triple product.

Lemma 2.4. [5] Let X be a real or complex Banach space, and let φ :
B(X)→ B(X) be a surjective map that satisfies

φ(A)φ(B)φ(A) = 0 if and only if ABA = 0 for all A, B ∈ B(X).
(2.2)

Then there is a scalar functional ϕ : B(X)→ K \ {0} such that one of
the following statements holds.

1. There is a bounded invertible linear, or a conjugate linear, operator
T : X → X such that φ(A) = ϕ(A)TAT−1 for all A ∈ B(X).

2. There is a bounded invertible linear, or a conjugate linear, operator
T : X∗ → X such that φ(A) = ϕ(A)TA∗T−1 for all A ∈ B(X).

3. Nonlinear maps preserving the kernel

We begin this section by stating and proving the following lemma which
will be used in the sequel.

Lemma 3.1. Let A,B ∈ B(X). If N(RA) = N(RB) for all rank one
operators R, then there is a nonzero scalar c such that A = cB.

Proof. Let A,B ∈ B(X). Choose x ∈ X a nonzero vector and f ∈ X∗

nonzero linear form. If N(RA) = N(RB) for all rank one operators R. It
follows, for R = x⊗ f , that N(x⊗ fA) = N(x⊗ fB), which is equivalent
to N(x ⊗ A∗f) = N(x ⊗ B∗f). Thus N(A∗f) = N(B∗f). So, A∗f and
B∗f are linearly dependent for every nonzero linear form f ∈ X∗. By
hypothesis one see that N(A∗) = N(B∗). Consequently A∗ and B∗ are
linearly dependent. Thus A and B are linearly dependent; as desired. 2

Now, we are able to state and prove our main results, we start by
the following theorem characterizing the surjective maps that preserve the
kernel of product of operators.

Theorem 3.2. Let X be a real or complex Banach space. A surjective
map φ : B(X)→ B(X) satisfies

N(φ(A)φ(B)) = N(AB) for all A, B ∈ B(X),(3.1)
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if and only if there exists ϕ : B(X)→K \ {0} such that φ(A) = ϕ(A)A for
all A ∈ B(X).

Proof. The ’if’ part is easily verified. To prove the ’only if’ part, assume
that φ satisfies the equation (3.1). In particular N(φ(A)φ(B)) = X if and
only if N(AB) = X for all A,B ∈ B(X), so φ satisfies the equation (2.1). It
follows, by Lemma 2.3, that there is a scalar function ϕ : B(X)→K \ {0}
and there is a bounded invertible linear, or conjugate linear, operator T :
X → X such that φ(A) = ϕ(A)TAT−1 for all A ∈ F1(X).

In the sequel we will prove that TA and φ(A) are linearly dependent
for all A ∈ B(X) and T = cI for some nonzero scalar c. Fix A ∈ B(X),
and let R be a rank one operator. We have

N(RA) = N(φ(R)φ(A)) = N(ϕ(R)TRT−1φ(A)) = N(RT−1φ(A)).

Thus, by Lemma 3.1, A and T−1φ(A) are linearly dependent. Then there
exists a nonzero scalar c ∈ K such that φ(A) = cTA for all A ∈ B(X).
Note that c depends on A and T and from the equation (3.1) c cannot be
0 for A 6= 0 . It remains to prove that T = αI for some nonzero scalar α.
Indeed, set A = I−x⊗f where x ∈ X and f ∈ X∗ such that f(x) = 1 and
B = I, since N(AB) = N(φ(A)φ(B)) = N(ATB) for all A,B ∈ B(X), it
follows that

span{x} = N(I − x⊗ f)

= N((I − x⊗ f)T )

= N(T − x⊗ fT )

= N(T (I − T−1x⊗ fT ))

= N(I − T−1x⊗ fT )

= span{T−1x}.

This implies that T−1x and x are linearly dependent. So T = αI for
some nonzero scalar α. We conclude that φ(A) = ϕ(A)A for all A ∈ B(X).
2

We end this section with the following result that characterizes surjec-
tive maps preserving the kernel of the difference of operators.

Theorem 3.3. Let X be a complex Banach space. A surjective map φ :
B(X)→ B(X) satisfies
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N(φ(A)− φ(B)) = N(A−B) for all A, B ∈ B(X),(3.2)

if and only if there exists T ∈ B(X) invertible such that φ(A) = TA+φ(0)
for all A ∈ B(X).

Proof. The necessarily condition is easily verified since T is injective.
Conversely, assume that φ satisfies the equation (3.2). Then φ(A)− φ(B)
is injective if and only if A−B is injective for all A,B ∈ B(X). It follows
that φ takes one of the forms given by Theorem 2.2.

Assume that φ takes the first one that is φ(A) = TAS + φ(0) for all
A ∈ B(X), where T, S : X → X are bounded invertible both linear, or
both conjugate linear. Let us prove that S = cI for some nonzero scalar c.
To do that, consider the surjective map

ψ(A) = φ(A)− φ(0), (A ∈ B(X)),

which satisfies the equation (3.2) with ψ(0) = 0.
Note that ψ(A) = TAS and N(ψ(A)) = N(A) for all A ∈ B(X). For a

rank one operator R ∈ B(X) we have

N(R) = N(ψ(R)) = N(TRS) = N(RS).

Thus, by Lemma 3.1, S = cI for some nonzero scalar c. Therefore φ(A) =
TA+ φ(0).

To finish the proof it remains to show that the second form can not
occur. Indeed, assume that

φ(A) = TA∗S + φ(0), (A ∈ B(X)),

where T : X∗ → X and S : X → X∗ are bounded invertible both linear,
or both conjugate linear. Since X is reflexive, we can find an injective and
non-surjective operator A ∈ B(X), see [3, 9]. Then, there is an operator
U ∈ B(X) such that A = φ(U) with U is injective, because φ is surjective.
For a nonzero vector y ∈ X let f ∈ X∗ with f = T−1y and x ∈ X \ {0}
such that f(x) = 1. We have

N(A− T (Ux⊗ f)∗S) = N(φ(U)− φ(Ux⊗ f))

= N(U − Ux⊗ f)

= N(I − x⊗ f)

= span{x}.
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Consequently, A−T (Ux⊗ f)∗S is not injective. Since A is injective we
deduce that

span{Tf} = R(T (Ux⊗ f)∗S) ⊂ R(A).

Thus y = Tf ∈ R(A) and so A is surjective which is a contradiction.
This completes the proof. 2

4. Nonlinear maps preserving the range

The first theorem of this section characterizes the surjective maps preserv-
ing the range of the difference of operators.

Theorem 4.1. Let X be a complex Banach space. A surjective map φ :
B(X)→ B(X) satisfies

R(φ(A)− φ(B)) = R(A−B) for all A, B ∈ B(X),(4.1)

if and only if there exists S ∈ B(X) invertible such that φ(A) = AS+φ(0)
for all A ∈ B(X).

Proof. The necessarily condition is easily verified since the opera-
tors S is surjective. Conversely, assume that R(φ(A) − φ(B)) = R(A −
B) for all A, B ∈ B(X), then R(φ(A) − φ(B)) = X if and only if
R(A − B) = X for all A,B ∈ B(X). Thus φ(A) − φ(B) is surjective if
and only if A−B is surjective for all A,B ∈ B(X), it follows, by Theorem
2.2, that one of the following assertions holds.

1. There are two bounded invertible both linear, or both conjugate lin-
ear, operators T, S : X → X such that φ(A) = TAS + φ(0) for all
A ∈ B(X).

2. There are two bounded invertible both linear, or both conjugate lin-
ear, operators T : X∗ → X and S : X → X∗ such that φ(A) =
TA∗S + φ(0) for all A ∈ B(X).

Let us prove that φ can not takes the second form. Assume for sake of
contradiction that φ takes a such form. Note that the map

ψ(A) := φ(A)− φ(0)

satisfies the equation (4.1) with ψ(0) = 0. For x ∈ X and f ∈ X∗, we have
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span{x} = R(x⊗ f)

= R(ψ(x⊗ f))

= R(T (x⊗ f)∗S))

= R(Tf ⊗ JxS) (J is the natural embedding of X to X∗∗)

= span{Tf}.

Hence, x and Tf are linearly dependent for every x ∈ X and f ∈
X∗. Which contradicts the fact that T is bijective and X with dimension
greatest than 2. Thus φ takes the first form.

It remains to prove that T = cI for some nonzero scalar c. To do that,
choose x ∈ X and f ∈ X∗. We have

span{x} = R(x⊗ f)

= R(ψ(x⊗ f))

= R(Tx⊗ fS)

= span{Tx}.

Which implies that for all x ∈ X, x and Tx are linearly dependent.
Thus, there is a nonzero scalar c such that T = cI.

Finally, dividing S by c if necessary, we see that φ(A) = AS+φ(0) and
S ∈ B(X). This finishes the proof. 2

With no extra efforts, the same proof as the one of the above theorem
yields the same conclusion by using the hyper-range of operator in the
equation (4.1) instead of the range of operator.

Theorem 4.2. Let X be a complex Banach space. A surjective map φ :
B(X)→ B(X) satisfies

R∞(φ(A)− φ(B)) = R∞(A−B) for all A, B ∈ B(X),(4.2)

if and only if there exist S ∈ B(X) invertible such that φ(A) = AS + φ(0)
for all A ∈ B(X).

The following result characterises the surjective maps preserving the
range of operator product.
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Theorem 4.3. Let X be a real or complex Banach space. A surjective
map φ : B(X)→ B(X) satisfies

R(φ(A)φ(B)) = R(AB) for all A, B ∈ B(X),(4.3)

if and only if there exists ϕ : B(X)→K \ {0} such that φ(A) = ϕ(A)A for
all A ∈ B(X).

Proof. The necessarily condition is easily verified. Conversely, assume
that R(φ(A)φ(B)) = R(AB) for all A,B ∈ B(X). Then R(φ(A)φ(B)) =
{0} if and only if R(AB) = {0} for all A,B ∈ B(X). It follows that
φ(A)φ(B) = 0 if and only if AB = 0 for all A,B ∈ B(X). Thus by
Lemma 2.3, there exist a scalar function ϕ : B(X) → K \ {0} and a
bounded invertible linear, or conjugate linear, T : X → X such that φ(A) =
ϕ(A)TAT−1 for all A ∈ F1(X). Let us show that T = cI for some nonzero
scalar c. To do that consider x ∈ X a nonzero vector, choose f ∈ X∗ such
that f(x) = 1, we have

span{x} = R(x⊗ f)

= R(x⊗ fx⊗ f)

= R(φ(x⊗ f)φ(x⊗ f))

= R(ϕ(x⊗ f)2Tx⊗ fT−1)

= span{Tx}.

It follows that x and Tx ar linearly dependent for all x ∈ X. Then
there exists a nonzero scalar c such that T = cI. Thus

φ(A) = ϕ(A)A for all A ∈ F1(X).

To finish the proof, let A be an arbitrary operator in B(X), and let us show
that A and φ(A) are linearly dependent. For every x ∈ X and f ∈ X∗ we
have

span{Ax} = R(Ax⊗ f)

= R(φ(A)φ(x⊗ f))

= R(ϕ(x⊗ f)φ(A)x⊗ f)

= span{φ(A)x}.
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Thus A and φ(A) are linearly dependent, and the proof is complete. 2
We close this paper with a theorem which characterizes maps preserving

the range of the triple product of operators.

Theorem 4.4. Let X be a real or complex Banach space. A surjective
map φ : B(X)→ B(X) satisfies

R(φ(A)φ(B)φ(A)) = R(ABA) for all A, B ∈ B(X),(4.4)

if and only if there exists ϕ : B(X)→K \ {0} such that φ(A) = ϕ(A)A for
all A ∈ B(X).

Proof. The necessarily condition is easily verified. Conversely, assume
that φ satisfies the equation (4.4). In particular R(φ(A)φ(B)φ(A)) = {0}
if and only if R(ABA) = {0} for all A,B ∈ B(X), it then follows that
φ(A)φ(B)φ(A) = 0 if and only if ABA = 0 for all A,B ∈ B(X). Thus, by
Lemma 2.4, there is a scalar function ϕ : B(X) → K \ {0} such that one
of the following assertions holds.

1. There is a bounded invertible linear, or conjugate linear, T : X → X
such that φ(A) = ϕ(A)TAT−1 for all A ∈ B(X).

2. There is a bounded invertible linear, or conjugate linear, T : X∗ → X
such that φ(A) = ϕ(A)TA∗T−1 for all A ∈ B(X).

The second case can not occur. Indeed, if φ(A) = ϕ(A)TA∗T−1, then
φ(I) = ϕ(I)I. We can write

R(A) = R(φ(A)) for all A ∈ B(X).(4.5)

In particular for all x ∈ X and f ∈ X∗ we have

span{x} = R(x⊗ f)

= R(φ(x⊗ f))

= R(ϕ(x⊗ f)T (x⊗ f)∗T−1)

= R(Tf ⊗ JxT−1)

= span{Tf}.

Thus, x and Tf are linearly dependent for every x ∈ X and f ∈ X∗,
this contradict the fact that T is bijective and X with dimension greatest
than 2. Therefore φ takes the first form.
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It remains to prove that T = cI. As the above consideration, we have

R(A) = R(φ(A)) for all A ∈ B(X).(4.6)

In particular for x ∈ X and f ∈ X∗ we have

span{x} = R(x⊗ f)

= R(φ(x⊗ f))

= R(ϕ(I)2Tx⊗ fT−1)

= span{Tx}.

It follows that for all x ∈ X, x and Tx are linearly dependent. Thus,
there is a nonzero scalar c such that T = cI.

We conclude that there exists ϕ : B(X) → K \ {0} such that φ(A) =
ϕ(A)A for all A ∈ B(X); as desired. 2
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