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Abstract

In this paper, we study bounds on the number of check digits of
linear codes that can detect multiple sub-blocks each affected by e or
less random errors and can locate such corrupted multiple sub-blocks.
Further, we obtain an upper bound on the number of check digits of
linear codes which can correct such errors occurring in multiple sub-
blocks. We also give examples of such codes.

Subjclass [2010] . 94B05, 94B65.

Keywords : Syndromes, Parity check digits, Bounds, Error locating
codes



130 Pankaj Kumar Das

1. Introduction

With the appearance of the paper entitled “Error-Locating Codes-A New
Concept in Error Control” by Wolf and Elspas [17], a new direction of
research in coding theory has been opened up and many papers are written
in this direction. Some of them may be mentioned as [1], [2], [4], [5], [12],
[15], [16]. The paper [17] introduced the concept of error-locating codes
(EL-codes)-which stands in between error detection and error correction
concept. EL-Codes are found to be useful for diagnosing fault in computer
systems and reducing the retransmission cost in communication systems
[11], semiconductor memory module [9]. In this technique, the block of
received digits is subdivided into some mutually exclusive sub-blocks and
while decoding, if error occurs within sub-block(s), one can detect the error
as well as one can identify which particular sub-block(s) contains the error.
Then retransmission of the corrupted sub-block(s) is sufficient instead of
the whole block. But the study of the paper [17] is confined to binary
codes and to single corrupted sub-block only, this paper takes the case of
binary as well as non-binary and multiple corrupted sub-blocks. It is worth
mentioning that location of several corrupted sub-blocks has been studied
in [2], [3], [12], [15], [16]. In [12], the study was done with respect to a new
metric. The paper [3] studies error-location codes which can locate mutiple
sub-blocks with burst error and in [2], [15], [16], error-location codes are
constructed by taking the tensor product of two codes. But the study is
not done with respect to bounds on the number of parity check digits of a
linear code that can locate several sub-blocks having random errors. The
present paper is an attempt in this direction. We further extend the study
to obtain bounds on the number of parity check digits of a linear code that
can correct random errors in multiple sub-blocks. For similar works on
blockwise correction of errors confined to a single sub-block, one may refer
to [6], [8].

The study of bounds on the number of parity check digits for a linear
code is important in order to know the efficiency of the code. If the number
of parity check symbols in a code is lesser, then the rate of information of
the code will be higher. In fact, the ultimate capabilities and limitation of
codes can be known by the bounds.

Now, we consider a linear code C which is nothing but a proper subspace
of n-tuples over GF (q). If G is a k × n generator matrix of the code C,
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then the number of information digits and parity check digits are k and
n− k respectively. A matrix H whose rows generate the null space of the
code C is known as the parity check matrix of the code C. The quantity
vHT is called the syndrome of the vector v. The linear code of length n
digits with dimension k, consisting of k information digits and r = n − k
parity digits, is divided into m mutually exclusive sub-blocks where each
sub-block contains t = n/m digits. The rate of information of an (n, k)
code is k/n.

We assume an (n, k) linear code over GF (q) which is divided into m
mutually exclusive sub-blocks and the number of corrupted sub-blocks is
at most l, each sub-block is affected by e or less errors where l ≤ m. Now
we state three conditions as below.

(i) The syndrome due to errors in any l or less sub-blocks, each sub-block
affected by at most e errors, must be non-zero.

(ii) The syndrome due to errors in any l or less sub-blocks, each sub-block
affected by at most e errors, must be distinct from the syndrome
resulting from such errors confined to any other set of l or less sub-
blocks.

(iii) The syndrome due to errors in any l or less sub-blocks, each sub-block
affected by at most e errors, must be distinct from the syndrome
resulting from such errors occurring in the same set of l or less sub-
blocks.

A linear code capable of detecting any l(≤ m) corrupted sub-blocks
each sub-block affected by at most e errors must satisfy the condition (i).
A linear code capable of locating any such l(≤ m) corrupted sub-blocks
must satisfy the condition (i) and (ii). A linear code which is capable of
correcting all such errors must satisfy all the three conditions (i), (ii) and
(iii).

The paper is arranged as follows. Section 1 is the introduction where we
discuss briefly about the basic idea and importance of the study. Section
2 obtains lower and upper bounds on the number of parity check digits
of a linear code that can detect any l or less corrupted sub-blocks, each
corrupted by e or less errors. Section 3 obtains lower and upper bounds on
the number of parity check digits of a linear code that is capable of locating
any such l or less corrupted sub-blocks. In Section 4, we obtain similar
bounds for a linear code that can correct such e or less errors affecting l or
less sub-blocks.
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2. Detection of e or less errors in multiple sub-blocks

This section derives lower and upper bounds on the number of check digits
of a linear code over GF (q) detecting multiple corrupted sub-blocks each
containing e or less errors.

Theorem 2.1. An (n, k) linear code over GF (q) which is divided into m
mutually exclusive sub-blocks of length t each, is capable of detecting any
l(≤ m) or less corrupted sub-blocks each containing e or less errors. The
number of parity check digits r needed for such an EL-code is given by

r ≥ logq

"
1 +

lX
j=1

( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j#
.

(bxc means the greatest integer less than or equal to x.)

Proof. In the proof, we first count the number of distinct syndromes
according to conditions (i) and then take this number less than or equal to
qr, maximum possible number of distinct syndromes.

For any j ≤ l, any syndrome produced by jbe/2c or less errors occurring
in any j sub-blocks with a sub-block containing not more than be/2c er-
rors must be distinct from any such syndrome likewise resulting from such
jbe/2c or less errors in the same set of j sub-blocks. Otherwise we get a
combination of at most e errors occurring in any j sub-blocks resulting in
the zero syndrome, which can not be true by condition (i). Since there
are

¡t
i

¢
combinations of i errors in t components in a given sub-block, the

number of such syndromes out of any j sub-blocks is

( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j

.(2.1)

Therefore, there are

lX
j=1

( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j

(2.2)

distinct syndromes, excluding the all zeros syndrome. Thus, we get
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qr ≥ 1 +
lX

j=1

( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j#
.

2

The following result provides an upper bound on the number of check
digits required for the existence of such a code is derived. The proof of the
result follows the technique of Varshamov-Gilbert-Sacks bound (refer Sacks
[14] and Theorem 4.17 of Peterson and Weldon [13]). This technique gives
us a method for construction of such codes in addition to the proof of the
result.

Theorem 2.2. An (n, k) linear EL-code over GF (q) which is divided into
m mutually exclusive sub-blocks of length t each, is capable of detecting
any l(≤ m/2) or less corrupted sub-blocks each containing e or less er-
rors. There shall always exist such an EL-code having r parity check digits
provided that

qr >
e−1X
i=0

Ã
t− 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.

Proof. By constructing a suitable (n− k)× n parity check matrix H of
the desired code, we prove the theorem. Assume that the columns of the
firstm−1 sub-blocks of H and the first j−1 columns h1, h2, . . . , hj−1 of the
mth sub-block have been added appropriately first and then we put down
the conditions to add jth column hj of the m

th sub-block of the matrix H
as follows:

According to condition (i), the syndrome resulting from errors in any l
or less sub-blocks, each sub-block affected by e or less errors must be non-
zero. So, hj should not be a linear combination of previous any e−1 or less
columns of the mth sub-block, together with any (l − 1)e or less columns
among the previous any l − 1 or less sub-blocks having not more than e
columns within a sub-block. In other words
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hj 6= vb1hb1 + vb2hb2 + . . .+ vbe−1hbe−1
+ uw11hw11 + uw12hw12 + . . .+ uw1ehw1e
+ uw21hw21 + uw22hw22 + . . .+ uw2ehw2e
+ .............
+ .............
+ uws1hws1 + uws2hws2 + . . .+ uwsehwse ,

(2.3)

where vbj , uwij ∈ GF (q), s ≤ l − 1 and hbj ’s are any e − 1 columns from
amongst the columns h1, h2, . . . , hj−1 of the mth sub-block and hwij ’s are
any e columns within a sub-block (for same value of i) chosen from previous
m− 1 sub-blocks.

If the code satisfies this condition, the detection of e or less errors each
set occurring in any l or less sub-blocks is ensured.

The linear combinations on the R.H.S. of (2.3), including the zero vec-
tor, can be counted as

e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!(
eX

i=1

Ã
t

i

!
(q − 1)i

)s

.(2.4)

Therefore, we can add the column hj to them
th sub-block ofH provided

that

qr >
e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.(2.5)

The proof is completed by replacing j by t. 2

Example 2.3. Consider a (16, 9) binary code with the 7 × 16 matrix H
which is constructed by the synthesis procedure explained in the proof of
Theorem 2.2 by considering m = 4, t = 4, l = 2, e = 2, q = 2.
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1
0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0
0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The above code can locate 2 or less corrupted sub-blocks each containing
2 or less errors because all the syndromes of such error are non-zero which
can be easily verified.

3. Location of e or less errors in multiple sub-blocks

This section is devoted for obtaining lower and upper bounds on the number
of check digits required for the existence of a linear code overGF (q) capable
of locating multiple corrupted sub-blocks each containing e or less errors.
Firstly, we obtain the lower bound on the number of check digits for such
a linear code and we follow similar approach used in Theorem 1 of [17].

Theorem 3.1. An (n, k) linear code over GF (q) which is divided into m
mutually exclusive sub-blocks of length t each, is capable of locating any
l(≤ m) or less corrupted sub-blocks each containing e or less errors. The
number of parity check digits r needed for such an EL-code is bounded
below by

r ≥ logq

"
1 +

lX
j=1

"Ã
m

j

!( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j##
.(3.1)

(bxc means the greatest integer less than or equal to x.)

Proof. In the proof, we first count the number of syndromes needed to
be distinct according to conditions (i) and (ii) and then make this number
less than or equal to qr, maximum possible number of distinct syndromes.

For any j ≤ l, any syndrome produced by jbe/2c or less errors occurring
in any j sub-blocks with a sub-block containing not more than be/2c er-
rors must be distinct from any such syndrome likewise resulting from such
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jbe/2c or less errors in the same set of j sub-blocks, according to condition
(i). The number of distinct syndromes is given by (2.1) i.e.

( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j

.

Further, syndromes resulted by combinations of up to le errors in dif-
ferent sets of l or less sub-blocks each not containing more that e errors
must be distinct by condition (ii); as a result, syndromes of up to jbe/2c
errors, whether confined to the same j sub-blocks or to different such sub-
blocks will be all distinct. As the number of ways in which we can choose j
sub-blocks from m sub-blocks is

¡m
j

¢
, so the number of distinct syndromes

excluding zero syndrome is

lX
j=1

"Ã
m

j

!( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j#

Hence

qr ≥ 1 +
lX

j=1

"Ã
m

j

!( be/2cX
i=1

Ã
t

i

!
(q − 1)i

)j#
.(3.2)

2

Remark 3.2. For l = 1 and q = 2, the bound 3.2 coincides with Theorem
1 by Wolf and Elpsas [17].

In the following result, an upper bound on the number of check digits
needed for the existence of a code considered in Theorem 3.1 is derived.
Similar technique of Theorem 2.2 is used for the proof.

Theorem 3.3. An (n, k) linear EL-code over GF (q) which is divided into
m mutually exclusive sub-blocks of length t each, is capable of locating
any l(≤ m/2) or less corrupted sub-blocks each containing e or less er-
rors. There shall always exist such an EL-code having r parity check digits
provided that

qr >
e−1X
i=0

Ã
t− 1
i

!
(q − 1)i ×

2l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.(3.3)
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Proof. For construction of a suitable (n− k)×n parity check matrix H
for the required code, we first assume that the columns of the first m− 1
sub-blocks of H and the first j − 1 columns h1, h2, . . . , hj−1 of the mth

sub-block are suitably added. We now put down the conditions to add jth

column hj of the m
th sub-block of the matrix H as follows:

According to condition (i), the syndrome getting from the occurrence of
e or less errors occurring in any l or less sub-blocks must be non-zero. So,
hj should not be a linear combination of previous any e−1 or less columns
of the mth sub-block, along with any (l − 1)e or less columns among the
previous any l−1 or less sub-blocks having not more than e columns within
a sub-block. Therefore, the number of linear combinations of columns that
hj can not be equal to is given by (2.4), i.e.

e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!(
eX

i=1

Ã
t

i

!
(q − 1)i

)s

.(3.4)

Further, according to condition (ii), the syndrome getting from e or
less errors occurring in any l or less sub-blocks must be different from the
syndrome getting from e or less errors occurring in any other set of l or less
sub-blocks (one sub-block contains not more than e errors). In view of this,
hj should not be a linear combination of previous any e−1 or less columns
of the mth sub-block, together with any e(2l − 1) or less columns amongst
the previous any 2l − 1 or less sub-blocks such that maximum number of
columns in a sub-block is e. In other words, hj can be added to the m

th

sub-block of H on the condition that
hj 6= vb1hb1 + vb2hb2 + . . .+ vbe−1hbe−1

+ uw11hw11 + uw12hw12 + . . .+ uw1ehw1e
+ uw21hw21 + uw22hw22 + . . .+ uw2ehw2e
+ .............
+ .............
+ uws1hws1 + uws2hws2 + . . .+ uwsehwse ,

(3.5)
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where vbj , uwij ∈ GF (q), s ≤ 2l − 1 and hbj ’s are any e − 1 columns from
amongst the columns h1, h2, . . . , hj−1 of the mth sub-block and hwij ’s are
any e columns within a sub-block (for same value of i) chosen from previous
m− 1 sub-blocks.

Thus, the number of linear combinations on the R.H.S. of (3.5) is

e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

2l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.(3.6)

Note that number of linear combinations computed in (3.4) is also con-
sidered in (3.6).

Therefore, hj can be added to the m
th sub-block of H provided that

qr >
e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

2l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.(3.7)

Putting t in place of j gives the theorem. 2

Remark 3.4. For l = 1, q = 2, the bound (3.3) reduces to

2r >
e−1X
i=0

Ã
t− 1
i

!
×
(
1 + (m− 1)

eX
i=1

Ã
t

i

!)

=⇒ 2r > 1 +
e−1X
i=1

Ã
t− 1
i

!
+ (m− 1)

eX
i=1

Ã
t

i

!
e−1X
i=0

Ã
t− 1
i

!

=⇒ 2r ≥ 2 +
e−1X
i=1

Ã
t− 1
i

!
+ (m− 1)

eX
i=1

Ã
t

i

!(
1 +

e−1X
i=1

Ã
t− 1
i

!)
.

This coincides with the result obtained by Dass and Muttoo [7], an
improvement of Theorem 2, Wolf and Elpsas [17].

Example 3.5. Consider a (16, 3) binary code with the 13× 16 matrix H
which is constructed by the synthesis procedure discussed in the proof of
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Theorem 3.3 by considering m = 4, t = 4, l = 2, e = 2, q = 2.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The above (16, 3) code can locate 2 or less corrupted sub-blocks each con-
taining 2 or less errors. We can easily verify that all the syndromes of errors
are non-zero and distinct in different sets of 2 or less sub-blocks.

4. Correction of e or fewer errors in multiple sub-blocks

In this section, we extend the study of Section 2 and consider the correction
of errors occuring in multiple sub-blocks. We present here an upper bound
on the number of parity check digits for the existence of a linear code that
is capable of correction of e or less errors occurring in multiple sub-blocks.
The lower bound on the number of parity check digits of such codes is
already obtained in [10] (Theorem 3.4) which may be stated as follows.

Theorem 4.1. For given l and e, suppose that an (n, k) linear code over
GF (q) subdivided into m mutually exclusive sub-blocks of length t each,
that corrects e or less errors occurring in any l or less sub-blocks. The
number of parity check digits r for such an (n, k) linear code is bounded
below by

qr ≥ 1 +
lX

j=1

"Ã
m

j

!(
eX

i=1

Ã
t

i

!
(q − 1)i

)j#
.(4.1)

Theorem 4.2. For given l and e, suppose that an (n, k) linear code over
GF (q) whose is divided into m mutually exclusive sub-blocks of length t
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each, corrects e or less errors occurring in any l or less sub-blocks (l ≤
m/2, e ≤ t/2). There shall always exist such an (n, k) linear code having r
parity check digits provided that

qr >
e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

2l−1X
s=l

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

+
2e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
2eX
i=1

Ã
t

i

!
(q − 1)i

!s

.

Proof. The result is also proved by the same techenique used in The-
orem 2.2 and Theorem 3.3. Suppose that the columns of the first m − 1
sub-blocks of H and the first j−1 columns h1, h2, . . . , hj−1 of the mth sub-
block have been added appropriately. To add the jth column hj of the m

th

sub-block of the matrix H, we need to follow the conditions (i)− (iii).

According to conditions (i) − (ii), the syndrome of e or less errors oc-
curring in any l or less sub-blocks must be non-zero and different from the
syndrome getting from e or less errors in any other set of l or less sub-
blocks. So, the column hj can be added to the m

th sub-block provided that
it should not be any one of the linear combinations of the R.H.S. of (3.5)
and the number of such linear combinations is given by (3.6), i.e.

e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

2l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

.

Further, according to condition (iii), the syndrome of e or less errors
occurring in any l or less sub-blocks must be different from the syndrome
getting from e or less errors in any same set of l or less sub-blocks. In view
of this, hj should not be a linear combination of previous any 2e−1 or less
columns of the mth sub-block, together with any 2e(l − 1) or less columns
amongst any previous l− 1 or less sub-blocks such that maximum number
of columns in a sub-block is 2e. In other words, for adding the column hj
to the mth sub-block of H, the condition is
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hj 6= vb1hb1 + vb2hb2 + . . .+ vb2e−1hb2e−1
+ uw11hw11 + uw12hw12 + . . .+ uw1(2e)hw1(2e)
+ uw21hw21 + uw22hw22 + . . .+ uw2(2e)hw2(2e)
+ .............
+ .............
+ uws1hws1 + uws2hws2 + . . .+ uws(2e)hws(2e) ,

(4.2)

where vbj , uwij ∈ GF (q), s ≤ l − 1 and hbj ’s are any 2e − 1 columns
from amongst the columns h1, h2, . . . , hj−1 of the mth sub-block and hwij ’s
are any 2e columns within a sub-block (for same value of i) chosen from
previous m− 1 sub-blocks.

The number of linear combinations on the R.H.S. of (4.2), including the
vector of all zeros, can be counted as

2e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
2eX
i=1

Ã
t

i

!
(q − 1)i

!s

.(4.3)

We note that some linear combinations on the R.H.S. of (4.2) are already
considered in (3.5). The number of common linear combinations is

e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1
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i

!
(q − 1)i

!s

.(4.4)

Therefore, the total number of linear combinations that hj can not
be is the sum of number computed in (3.6) and in (4.3) minus the number
computed in (4.4). These all combinations might yield distinct sums. Thus,
we can add the column hj to the m

th sub-block of H provided

qr >
e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

2l−1X
s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
t

i

!
(q − 1)i

!s

+
2e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
2eX
i=1

Ã
t

i

!
(q − 1)i

!s

−
e−1X
i=0

Ã
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!
(q − 1)i ×
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s=0

Ã
m− 1
s

!Ã
eX

i=1

Ã
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i

!
(q − 1)i

!s

.
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or

qr >
e−1X
i=0
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j − 1
i

!
(q − 1)i ×

2l−1X
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Ã
m− 1
s

!Ã
eX

i=1
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(q − 1)i

!s

(4.5)

+
2e−1X
i=0

Ã
j − 1
i

!
(q − 1)i ×

l−1X
s=0

Ã
m− 1
s

!Ã
2eX
i=1

Ã
t

i

!
(q − 1)i

!s

.

The theorem follows by replacing j by t in (4.5). 2

Example 4.3. Consider a (20, 5) binary code with the 15× 20 matrix H
which is constructed by the synthesis procedure considered in the proof of
Theorem 4.2 by taking m = 5, t = 4, l = 2, e = 2, q = 2.

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The above code can correct 2 or less errors occurring in any 2 or less

sub-blocks. It can be also checked that all the syndromes of 2 or less errors
in any 2 or less sub-blocks are non-zero and distinct whether in the same
set of 2 or less sub-blocks or different sets of 2 or less sub-blocks. It may
be noted that in Example 4.3, the syndromes may coincide in the same set
of 2 or less sub-blocks, but they need to be distinct in different sets of 2 or
less sub-blocks.
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Remark 4.4. The distance of the (20, 5) binary code in the above example
is 5, but it is capable of correcting 4 or less errors confined to any 2 sub-
blocks, maximum number of errors in one sub-block is 2.
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