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Abstract
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and square integrable. An example is also given to illustrate the re-
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1. Introduction

In this article, sufficient conditions are obtained such that every solution of
(1.1) tends to zero as t→∞ of the neutral equation of the form

[x(t) + βx(t− r)]000 + a(t) x00(t) + b(t) x0(t) + c(t) f(x(t− r)) = 0,(1.1)

and the boundedness and the square integrability of

[x(t) + βx(t− r)]000 + a(t) x00(t) + b(t)x0(t) + c(t)f(x(t− r)) = h(t),(1.2)

where, β and r are constants with 0 ≤ β ≤ 1 and r ≥ 0, h(t) and f(x)
continuous functions depending only on the arguments shown and f 0(x)
exist and is continuous for all x.
By a solution of (1.1) we mean a continuous function x : [tx,∞)→ R such

that x(t) + βx(t− r) ∈ C3
Ã
[tx,∞),R

!
and which satisfies equation (1.1)

on [tx,∞).

The asymptotic behavior of solutions in special cases β = 0 or r = 0
has been studied by serval authors see for example Ademola et al. [1, 2],

Graef et al. [11, 12], Omeike [14], Oudjedi et al. [15], Remili et al.
³
[16]-

[27]
´
, Tunç [29, 30]. This problem for neutral differential equations has

received considerable attention in recent years Bacuĺıková [4], Mihaĺıková
and Kostiková [5], Das and Misra [6], Dorociaková [7], Došlá and Lǐska
[8, 9], Kulenovic et al. [13], Tian et al. [28], Li et al. [31], Yu et al. [32], Yu
Jianshe [33]. Many books dealt with the neutral delay differential equation
and obtained many good results, for example Arino et al. [3], El’sgol’ts[10].

Neutral differential equations have many applications. For example,
these equations arise in the study of two or more simple oscillatory sys-
tems with some interconnections between them and in modeling physical
problems such as vibration of masses attached to an elastic bar. In the
qualitative analysis of such systems, the stability and asymptotic behavior
of solutions play an important role.

However, as far as we know, there aren’t works studying the asymptotic
behavior of third order neutral differential equations with delay of the form
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(1.2) by using Lyapunov’ s functionals.
Motivated by this fact, in the present paper, we will investigate the asymp-
totic behavior, boundedness and square integrability of solutions of differ-
ential equation (1.2).

The organization of this article is as follows: In section 2, we give
a theorem, which deal with asymptotic stability of every solution of the
delay differential equation (1.1) when h(t) = 0. In section 3, we introduced
theorem which discuss the boundedness of the solutions of equation (1.2)
for the case h(t) 6= 0. In section 4, we introduced theorem which discuss the
square integrability of the solutions of equation (1.2). Eventually, example
is given in section 5.

2. Asymptotic stability

We shall state here some assumptions which will be used on the functions
that appeared in equation (1.1), and suppose that there are positive con-
stants a0, a1, c0, b1, L, δ, d, γ, η and M such that the following conditions
are satisfied:

H0) 0 < a0 ≤ a(t) ≤ a1 , 0 < c0 ≤ c(t) ≤ b(t) ≤ b1; for all t ≥ t0 + r,

H1) δ(1 +
β
2 ) < d < a0, −L ≤ b0(t) ≤ c0(t) ≤ 0; for all t ≥ t0 + r,

H2) f(0) = 0,
f(x)

x
≥M > 0 (x 6= 0), and f 0(x) ≤ δ; for all x,

H3)
1

2
da0(t) − c0(d − (1 +

β

2
)δ) +

b1β

2
(1 + β + δ) ≤ −η < 0; for all

t ≥ t0 + r,

H4) β(a1 − d) + b1β(1 + β)− (2− β)(a0 − d) = −γ < 0.

For the brevity, we put

X(t) = x(t) + βx(t− r).

The equation (1.1) is equivalent to the following system
x0(t) = y(t)
y0(t) = z(t)

Z 0(t) = −a(t)z(t)− b(t)y(t)− c(t)f(x(t)) + c(t)
R t
t−r f

0(x(s))y(s)ds.

(2.1)
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According to the definition of X(t) and (2), we have

X 0(t) = y(t) + βy(t− r) = Y (t),

and

X 00(t) = z(t) + βz(t− r) = Z(t).

Theorem 2.1. Assume that all assuptions (H0 −H4) hold. Then, every
solution of (2) is asymptoticaly stable if

r < min

½
2η

δ(1 + β + 2d)
,

γ

δ(1 + β)

¾
.

Proof. Define a Lyapunov functional V (t, x, y, Z) as

V = V0+V1+µ

Z t

t−r
z2(s)ds+σ

Z t

t−r
y2(s)ds+λ

Z 0

−r

Z t

t+s
y2(τ)dτds,

(2.2)

where

V0 = dc(t)F (x) + c(t)Y f(x) +
b(t)

2
Y 2,

V1 =
1

2
Z2 + dyZ +

1

2
da(t)y2,

such that F (x) =
R x
0 f(u)du. µ, σ and λ are to be selected below suitably.

First we shall show that V (t) defined by (2.2) is positive definite. From H0

and H1 we have

V1 =
1

2

Ã
Z2 + 2dyZ + da(t)y2

!

=
1

2

Ã
(Z + dy)2 + dy2(a(t)− d )

!
.

In the same way, it follows that

V1 =
da(t)

2

µ
y +

1

a(t)
Z

¶2
+
1

2

µ
a(t)− d

a(t)

¶
Z2.
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Then

V1 =
1

4
(Z + dy)2 +

1

4
da(t)

µ
y +

1

a(t)
Z

¶2
+
1

4
d(a(t)− d )y2 +

1

4a(t)
(a(t)− d))Z2

≥ d(a0 − d )

4
y2 +

(a0 − d )

4a1
Z2.

From this inequality we can deduce a positive constant k0 such that

V1 ≥ k0(y
2 + Z2),

where k0 = min

½
d

4
(a0 − d ),

1

4a1
(a0 − d)

¾
. Using H0, we obtain

V0 = dc(t)F (x) +
b(t)

2

∙
Y 2 +

2c(t)Y f(x)

b(t)

¸
= dc(t)

Z x

0
f(u)du+

b(t)

2

"
(Y +

c(t)

b(t)
f(x))2 − c2(t)

b2(t)
f2(x)

#

≥ dc(t)

Z x

0
f(u)du− c2(t)

2b(t)
f2(x).

Since f(0) = 0 and f 0(x) ≤ δ, it follows that

1

2
f2(x) =

Z x

0
f(u)f 0(u)du ≤ δ

Z x

0
f(u)du.

Thus, from H1 we get

V0 ≥ dc(t)

Z x

0

µ
1 − δ

d

¶
f(u)du

≥ δ1

Z x

0
f(u)du = δ1F (x)

where δ1 = dc0 (1−
δ

d
). Observe that by H2 we have

f2(x)

x2
≥M2,

which implies that

F (x) ≥ 1

2δ
f2(x) ≥ M2

2δ
x2(t).
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Since

σ

Z t

t−r
y2(s)ds+ µ

Z t

t−r
z2(s)ds+ λ

Z 0

−r

Z t

t+s
y2(τ)dτds > 0,

it follows that
V ≥ k1(Z

2 + y2 + x2),(2.3)

where k1 = min

(
k0,

M2δ1
2δ

)
. It is not difficult to verify that

W (x, y, Z) = k1(Z
2 + y2 + x2) = 0 ⇔ x = y = Z = 0

and
V ≥ k1(Z

2 + y2 + x2) =W (x, y, Z) > 0 if (x, y, Z) 6= 0.
The derivative of the functional V along the trajectories of the system

(2) is given by
V 0(2)

= dc0(t)F (x) + c0(t)Y f(x) + b0(t)
2 Y 2 + 1

2da
0(t)y2 + βc(t)yy(t− r)f 0(x) + b(t)βy(t− r)z

+b(t)β2y(t− r)z(t− r)− σy2(t− r)− db(t)y2 + c(t)y2f 0(x) + σy2 + λry2

+(d− a(t))z2 + µz2 + β(d− a(t))zz(t− r)− µz2(t− r)− λ
R t
t−r y

2(s)ds

+c(t)(z + βz(t− r) + dy )
R t
t−r f

0(x(s))y(s)ds.

We claim that

dc0(t)F (x) + c0(t)Y f(x) +
b0(t)

2
Y 2 ≤ 0,

for all t ≥ 0, x and y. The remaining of this proof follows the strategy
indicated in the proof of Theorem 3.1 in [22] and hence it is omitted.

By the condition H2 and applying the estimate 2uv ≤ u2+v2 we obtain

z

Z t

t−r
f 0(x(s))y(s)ds ≤ δr

2
z2 +

δ

2

Z t

t−r
y2(s)ds,

βz(t− r)

Z t

t−r
f 0(x(s))y(s)ds ≤ βδr

2
z2(t− r) +

δβ

2

Z t

t−r
y2(s)ds,

dy

Z t

t−r
f 0(x(s))y(s)ds ≤ δr

2
dy2 ++

δd

2

Z t

t−r
y2(s)ds.

From conditions H0 and H1 and the above estimates it is easy to see
that V 0(2) can be replaced by
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V 0(2) ≤
µ
1

2
da0(t)− b(t)(d− δ(1 +

β

2
)
c(t)

b(t)
) + σ +

dδr

2
+ λr

¶
y2(t)

+

µ
µ− (2− β)(a0 − d)− βb1

2
+

δr

2

¶
z2(t)

+

µ
b1β

2
(1 + β) +

δβb1
2
− σ

¶
y2(t− r)

+

Ã
β(a1 − d) + b1β

2

2
− µ+ β

δr

2

!
z2(t− r)

+

µ
δ

2
+ β

δ

2
+

dδ

2
− λ

¶ Z t

t−r
y2(s)ds.

Let

µ =
β(a1 − d) + b1β

2 + βδr

2
, λ =

δ

2
(1+β+ d) and σ =

b1β

2
(1+β+ δ),

the last inequality becomes

V 0(2) ≤
µ
1

2
da0(t)− c0(d− (1 +

β

2
)δ) +

b1β

2
(1 + β + δ) +

δr

2
(1 + β + 2d)

¶
y2(t)

+
1

2

Ã
β(a1 − d) + b1β(1 + β)− (2− β)(a0 − d) + δr(1 + β)

!
z2(t)

≤
µ
−η + δr

2
(1 + β + 2d)

¶
y2(t) +

1

2

Ã
− γ + δr(1 + β)

!
z2(t).

Therefore, from H3 and H4 there exists a positive constant N such that

V 0(2) ≤ −N
Ã
y2(t) + z2(t)

!
(2.4)

provided that

r < min

½
2η

δ(1 + β + 2d)
,

γ

δ(1 + β)

¾
.

Finally, it follows that

V 0(2)(t, x, y, Z) = 0 if and only if x = y = Z = 0

and
V 0(2)(t, x, y, Z) < 0 for (x, y, Z) 6= 0
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Thus, all the conditions of theorem are satisfied. This shows that every
solution of system (2) is asymptotically stable. The proof of Theorem 2.1
is now completed. 2

3. Boundedness

We would need to write (1.2) in the form
x0(t) = y(t)
y0(t) = z(t)

Z 0(t) = −a(t)z(t)− b(t)y(t)− c(t)f(x(t)) + h(t) + c(t)
R t
t−r f

0(x(s))y(s)ds,

(3.1)

to study the boundedness of solutions of (3).
We conclude that

|
Our main theorem in this section is stated with respect to (3) as follows:

Theorem 3.1. Assume that all the conditions of Theorem 2.1 are satisfied
and there exists a positive constant D1 such that :
H5)

R t
t1
|h(s)|ds < D1.

Then there exists a positive constantD such that any solution of (3) satisfies

|x(t)| ≤ D, |y(t)| ≤ D, |Z(t)| ≤ D.(3.2)

Proof. On differentiating (2.2) along the system (3.1) we obtain

V 0(3) = V 0(2) + h(t)

µ
dy + Z

¶
,

since V 0(2) ≤ 0, then it follows that

V 0(3) ≤ K2 |h(t)| (|y|+ |Z|)

where K2 = max {d, 1} . Since |y| ≤ y2 + 1, |Z| ≤ Z2 + 1 and the
inequality (2.3), we obtain

V 0(3) ≤ K2 |h(t)| (y2 + Z2 + 2)

≤ K3 |h(t)| V (t) + 2K2 |h(t)| ,(3.3)
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where K3 := k−11 K2 > 0.

Integrating both sides (3.3) from t1 to t, t ≥ t1 = t0+ r, one can easily
obtain

V (t)− V (t1) ≤ 2K2

Z t

t1
|h(s)| ds+K3

Z t

t1
V (s) |h(s)| ds.

Thus

V (t) ≤ V (t1) + 2K2D1 +K3

Z t

t1
V (s) |h(s)| ds.

Using Gronwall inequality it follows that

V (t) ≤ (V (t1) + 2K2D1) exp

µ
K3

Z t

t1
|h(s)| ds

¶
≤ D2,(3.4)

where D2 = (V (t1) + 2K2D1) exp

µ
K3D1

¶
.

This completes the proof of Theorem 3.1. 2

4. Square Integrability

Our next result concerns the square integrability of solutions of equation
(1.2).

Theorem 4.1. In addition to the assumptions of Theorem 3.1, if we as-
sume that

H6) c0M −
b1
2
> 0;

H7)
R+∞
t1

|a0(s)|ds < A.

Then all the solutions of (1.2) and their derivatives are elements of L2[t1,+∞).

Proof. Define W(t) as

W (t) = V (t) + ε

Z t

t1
(z2(s) + y2(s))ds, ∀t ≥ t1,(4.1)

where ε > 0 is a constant to be specified later. By differentiating W(t)
along the solution of system (3) and using (2.4) and (3.3) we obtain

W 0
(3)(t) ≤ (ε−N)(z(t)2 + y(t)2) +

µ
K3V (t) + 2K2

¶
|h(t)| .
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If we choose ε−N < 0, then from (3.4) we get

W 0
(3)(t) ≤ K4 |h(t)| ,(4.2)

whereK4 = K3D2+2K2. Integrating (4.2) from t1 to t, and using condition
(H5) of Theorem 3.1 we obtain

W (t)−W (t1) =

Z t

t1
W 0
(3)(s)ds ≤ K4D1.

Using equality V (t1) =W (t1) we get

W (t) ≤ K4D1 + V (t1).

We can conclude by (4.1) thatZ t

t1
(y2(s) + z2(s))ds <

K4D1 + V (t1)

ε
,

which imply the existence of positive constants σ1 and σ2 such thatZ t

t1
x002(s)ds =

Z t

t1
z2(s)ds ≤ σ2

and Z t

t1
x02(s)ds =

Z t

t1
y2(s)ds ≤ σ1.

We assert that
R t
t1
x2(s)ds <∞, to prove this we multiply (1.2) by x(t− r),

we obtain

x(t− r)x000(t) + βx(t− r)x000(t− r) + a(t)x(t− r)x00(t) + b(t)x(t− r)x0(t)

+ c(t)x(t− r)f(x(t− r)) = x(t− r)h(t).(4.3)

Integrating (??) from t1 to t, we haveZ t

t1
c(s)x(s− r)f(x(s− r))ds = ∆1(t) +∆2(t) +∆3(t),(4.4)

where
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∆1(t) = −
Z t

t1
(x(s− r)x000(s) + βx(s− r)x000(s− r))ds,

∆2(t) = −
Z t

t1
(a(s)x(s− r)x00(s) + b(s)x(s− r)x0(s))ds,

∆3(t) =

Z t

t1
h(s)x(s− r)ds.

Integrating by parts and using the estimate 2uv ≤ u2 + v2 we obtain

∆1(t) = M1(t)−M1(t1) +

Z t

t1
x0(s− r)x00(s)ds

≤ |M1(t)−M1(t1)|+
Z t

t1

1

2

³
x02(s− r) + x002(s)

´
ds

where

M1(t) = −x(t− r)X 00(t) +
β

2
x02(t− r).

By the fact thatZ t

t1
x02(s− r)ds =

Z t−r

t0
x02(u)du ≤

Z t1

t0
x02(u)du+ σ1 ≤ n+ σ1.

We remark by our hypothesis and the inequalities (3.2) that

|M1(t)−M1(t1)| ≤ D2
³
3β
2 + 1

´
+ |M1(t1)| , for all t ≥ t1.

Thus

∆1(t) ≤ D2
³3β
2
+ 1

´
+ |M1(t1)|+

1

2
(n+ σ1 + σ2) = l1.

Similarly we have

∆2(t) = −
Z t

t1

Ã
a(s)x(s− r)x00(s) + b(s)x(s− r)x0(s)

!
ds

= −a(t)x(t− r)x0(t) + a(t)

Z t

t1
x0(s)x0(s− r)ds+

Z t

t1
a0(s)x(s− r)x0(s)ds

−
Z t

t1
a0(s)

∙Z s

t1
x0(u)x0(u− r)du

¸
ds−

Z t

t1
b(s)x(s− r)x0(s)ds+M2(t1)
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where M2(t1) = a(t1)x(t1 − r)x0(t1). Then, from condition H7 we have

∆2(t) ≤ a1(D
2 + σ1 +

n
2 ) +R t

t1

⎛⎝ |a0(s)| |x0(s)| |x(s− r)|+ |a0(s)|
hR s

t1
x0(u)x0(u− r)du

i⎞⎠ds
+ b1

2

R t
t1
x2(s− r)ds+ b1

2

R t
t1
x02(s)ds+ |M2(t1)|

≤ a1(D
2 + σ1 +

n
2 ) + |M2(t1)|+ (D2 + σ1 +

n
2 )
R t
t1
|a0(s)| ds

+ b1
2

R t
t1
x2(s− r)ds+ b1

2 σ1

≤ a1(D
2 + σ1 +

n
2 ) + |M2(t1)|+ (D2 + σ1 +

n
2 )A+

b1
2 σ1

+ b1
2

R t
t1
x2(s− r)ds.

Next

∆3(t) ≤
Z t

t1
|x(s− r)| |h(s)| ds

≤ D

Z t

t1
h(s)ds

≤ D1D.

By (4.4) and condition (H6) of Theorem 4.1 we obtain

c0M

Z t

t1
x2(s−r)ds ≤

Z t

t1
c(s)x(s−r)f(x(s−r))ds ≤ K+

b1
2

Z t

t1
x2(s−r)ds,

then

(c0M −
b1
2
)

Z t

t1
x2(s− r)ds ≤ K,

where

K = l1 + (a1 +A)(D2 + σ1 +
n

2
) + |M2(t1)|+

b1
2
σ1 +D1D.

from which it follows that

Z t

t1
x2(s − r)ds < ∞ hence

Z +∞

t1
x2(s)ds < ∞.

This fact completes the proof of theorem. 2

5. Example

We consider the following third order non-autonomous delay neutral differ-
ential equation
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[x(t) + βx(t− r)]000 + (
1

π
arctan t+

13

2
)x00 + (

1

2 + t2
+ 1)x0

+(
1

4 + t2
+ 1)(x(t− r) +

x(t− r)

1 + x2(t− r)
) =

sin t

1 + t2
.(5.1)

Now, it is easy to see that for all t ≥ t1,

6 = a0 ≤ a(t) =
1

π
arctan t+

13

2
≤ 7 = a1, a0(t) =

1

π(1 + t2)
≤ 1

π
,

1 = c0 ≤ c(t) =
1

4 + t2
+ 1 ≤ b(t) =

1

2 + t2
+ 1 ≤ 3

2
= b1,

1 =M ≤ f(x)

x
= 1 +

1

1 + x2
with x 6= 0, and |f 0(x)| ≤ 2 = δ,

δ(1 +
β

2
) =

9

4
< d < 6 = a0, for β =

1

4
,

c0M −
b1
2
= 1− 3

4
> 0,

1

2
da0(t)− c0(d− (1 +

β

2
)δ) +

b1β

2
(1 + β + δ) ≤ −1

2
< 0, for d = 4,

β(a1 − d)− (2− β)(a0 − d) + βb1(1 + β) = −2, 28 < 0,Z +∞

t1
|a0(s)|ds = 1

π

Z +∞

t1

1

1 + s2
< +∞,Z +∞

t1
|h(s)|ds ≤

Z +∞

t1

1

1 + s2
< +∞.

All the assumptions of Theorem 4.1 are satisfied, we can conclude that
every solution of (5.1) and their derivatives are bounded and elements of
L2[t1,+∞).
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